


Python	Programming	for	Beginners
Jason	Cannon



Python	Programming	for	Beginners
Your	Free	Gift
Introduction
Configuring	your	Environment	for	Python
Installing	Python
Preparing	Your	Computer	for	Python
Review
Resources

Chapter	1	-	Variables	and	Strings
Variables
Strings
Using	Quotes	within	Strings
Indexing
Built-in	Functions
String	Methods
String	Concatenation
Repeating	Strings
The	str()	Function
Formatting	Strings
Getting	User	Input
Review
Exercises
Resources

Review
Chapter	2	-	Numbers,	Math,	and	Comments
Numeric	Operations
Strings	and	Numbers
The	int()	Function
The	float()	Function
Comments
Review
Exercises

Chapter	3	-	Booleans	and	Conditionals
Comparators
Boolean	Operators
Conditionals
Review
Exercises
Resources

Chapter	4	-	Functions
Review
Exercises
Resources



Chapter	5	-	Lists
Adding	Items	to	a	List
Slices
String	Slices
Finding	an	Item	in	a	List
Exceptions
Looping	through	a	List
Sorting	a	List
List	Concatenation
Ranges
Review
Exercises
Resources

Chapter	6	-	Dictionaries
Adding	Items	to	a	Dictionary
Removing	Items	from	a	Dictionary
Finding	a	Key	in	a	Dictionary
Finding	a	Value	in	a	Dictionary
Looping	through	a	Dictionary
Nesting	Dictionaries
Review
Exercises
Resources

Chapter	7	-	Tuples
Switching	between	Tuples	and	Lists
Looping	through	a	Tuple
Tuple	Assignment
Review
Exercises
Resources

Chapter	8	-	Reading	from	and	Writing	to	Files
File	Position
Closing	a	File
Automatically	Closing	a	File
Reading	a	File	One	Line	at	a	Time
File	Modes
Writing	to	a	File
Binary	Files
Exceptions
Review
Exercises
Resources

Chapter	9	-	Modules	and	the	Python	Standard	Library
Modules
Peeking	Inside	a	Module
The	Module	Search	Path
The	Python	Standard	Library



Creating	Your	Own	Modules
Using	main
Review
Exercises
Resources

Conclusion
About	the	Author
Additional	 Resources	 Including	 Exclusive	 Discounts	 for	 Python	 Programming	 for	 Beginners
Readers
Python
Ruby	and	Ruby	on	Rails
Web	Development

Appendix
Appendix	A:	Trademarks



Your	Free	Gift
As	a	 thank	you	 for	 reading	Python	Programming	 for	Beginners,	 I	would	 like	 to	 give	 you	 two	 free
gifts.	The	first	is	a	copy	of	Common	Python	Errors.	In	it,	you	will	learn	how	to	troubleshoot	over	25
of	the	most	common	coding	mistakes	made	by	Python	programmers.

The	second	gift	is	a	Python	cheat	sheet	and	reference	card.	You	can	use	it	as	a	quick	reference	or	a
gentle	reminder	of	Python	syntax	and	commonly	used	options.	These	gifts	are	a	perfect	complement
to	the	book	and	will	help	you	along	your	Python	journey.

Visit	 http://www.linuxtrainingacademy.com/python-for-beginners/	 or	 click	 here	 to	 download	 your
free	gifts.

http://www.linuxtrainingacademy.com/python-for-beginners/
http://www.linuxtrainingacademy.com/python-for-beginners/


Introduction
Knowing	where	to	start	when	learning	a	new	skill	can	be	a	challenge,	especially	when	the	topic	seems
so	 vast.	 There	 can	 be	 so	much	 information	 available	 that	 you	 can't	 even	 decide	where	 to	 start.	Or
worse,	you	start	down	 the	path	of	 learning	and	quickly	discover	 too	many	concepts,	programming
examples,	and	nuances	that	aren't	explained.	This	kind	of	experience	is	frustrating	and	leaves	you	with
more	questions	than	answers.

Python	 Programming	 for	 Beginners	 doesn't	 make	 any	 assumptions	 about	 your	 background	 or
knowledge	 of	 computer	 programming	 or	 the	 Python	 language.	 You	 need	 no	 prior	 knowledge	 to
benefit	from	this	book.	You	will	be	guided	step	by	step	using	a	logical	and	systematic	approach.	As
new	concepts,	code,	or	jargon	are	encountered	they	are	explained	in	plain	language,	making	it	easy
for	anyone	to	understand.

Throughout	the	book	you	will	presented	with	many	examples	and	various	Python	programs.	You	can
download	 all	 of	 the	 examples	 as	 well	 as	 additional	 resources	 at
http://www.LinuxTrainingAcademy.com/python-for-beginners.

Let's	get	started.

http://www.linuxtrainingacademy.com/python-for-beginners/?utm_source=python-for-beginners&utm_medium=ebook&utm_term=ebook&utm_content=ebook&utm_campaign=python-for-beginners


Configuring	your	Environment	for	Python
Installing	Python

Choosing	Python	2	or	Python	3

If	 you	 are	 starting	 a	 new	project	 or	 are	 just	 learning	Python	 I	 highly	 recommend	 using	Python	 3.
Python	3.0	was	released	in	2008	and	at	this	point	the	Python	2.x	series	is	considered	legacy.	However,
there	are	a	lot	of	Python	2	programs	that	are	still	in	use	today	and	you	may	encounter	them	from	time
to	time.	The	good	news	is	that	the	Python	2.7	release	bridges	the	gap	between	Python	2	and	Python	3.
Much	of	the	code	written	for	Python	3	will	work	on	Python	2.7.	However,	that	same	code	will	most
likely	not	run	unmodified	on	Python	versions	2.6	and	lower.

Long	story	short,	if	at	all	possible	use	the	latest	version	of	Python	available.	If	you	must	use	Python	2,
use	Python	2.7	as	it	is	compatible	with	all	Python	2	code	and	much	of	Python	3.	The	primary	reason	to
choose	 Python	 2	 over	 Python	 3	 is	 if	 your	 project	 requires	 third-party	 software	 that	 is	 not	 yet
compatible	with	Python	3.

Windows	Installation	Instructions

By	default,	Python	does	not	come	installed	on	the	Windows	operating	system.	Download	the	Python
installer	from	the	Python	downloads	page	at	https://www.python.org/downloads.	Click	on	"Download
Python	3.x.x."	to	download	the	installer.	Double	click	the	file	to	start	the	installation	process.	Simply
keep	clicking	on	"Next"	to	accept	all	of	the	defaults.	If	you	are	asked	if	you	want	to	install	software	on
this	 computer,	 click	 on	 "Yes."	 To	 exit	 the	 installer	 and	 complete	 the	 Python	 installation,	 click	 on
"Finish."

https://www.python.org/downloads


Installing	Python

Installing	Python



Installing	Python

Installing	Python



Installing	Python

Installing	Python

Mac	Installation	Instructions

At	 the	 time	of	 this	writing	 the	Mac	operating	system	ships	with	Python	2.	 In	order	 to	use	 the	 latest
version	 of	 Python,	 you	 will	 need	 to	 download	 and	 install	 it.	 Visit	 the	 Python	 downloads	 page	 at
https://www.python.org/downloads	 and	 click	 on	 "Download	 Python	 3.x.x."	Double	 click	 on	 the	 file
you	just	downloaded	to	access	the	contents	of	the	disk	image.	Run	the	installer	by	double	clicking	on
the	"Python.mpkg"	file.	If	you	encounter	a	message	stating	that	"Python.mpkg	can’t	be	opened	because
it	is	from	an	unidentified	developer,"	you	will	need	to	control-click	the	Python.mpkg	file.	Next,	select
"Open	with	..."	and	finally	click	on	"Installer."	When	you	are	asked	if	you	are	sure	you	want	to	open	it,
click	"Open."	If	you	are	asked	to	enter	an	administrator's	username	and	password,	please	do	so.

https://www.python.org/downloads


Installing	Python

Installing	Python



Installing	Python

Installing	Python

Click	through	the	installer	and	accept	all	of	the	defaults.

Installing	Python



Installing	Python



Installing	Python

You	will	now	have	a	Python	folder	 that	resides	 in	 the	Applications	folder.	 In	 the	Python	folder	you
will	 find	 a	 link	 to	 IDLE,	 the	 Integrated	 DeveLopment	 Environment,	 and	 a	 link	 to	 some	 Python
documentation.	In	addition	to	accessing	Python	from	IDLE,	you	can	open	up	the	Terminal	application,
located	at	/Application/Utilities/Terminal,	and	run	python3.	Later	in	this	chapter	you	will	learn	how
to	run	Python	programs	using	IDLE	and	the	command	line.

[jason@mac	~]$	which	python3

/Library/Frameworks/Python.framework/Versions/3.4/bin/python3

[jason@mac	~]$	python3	--version

Python	3.4.1

Linux	Installation	Instructions

Some	Linux	distributions	ship	with	just	Python	2	installed.	However,	it	is	becoming	more	and	more
common	to	see	Python	2	and	Python	3	installed	by	default.	To	determine	if	you	have	Python	installed,
open	 a	 terminal	 emulator	 application	 and	 type	python	 --version	 and	 python3	 --version	 at	 the
command	prompt.	In	many	cases	the	python	command	will	actually	be	Python	2	and	there	will	be	a
python3	command	for	running	Python	3.

[jason@linuxbox	~]$	python	--version

Python	2.7.6

[jason@linuxbox	~]$	python3	--version



Python	3.4.1

If	python	 or	python3	 is	 not	 installed	 on	 your	 Linux	 system	 you	will	 see	 a	 "command	 not	 found"
error	message.	In	the	following	example,	Python	2	is	installed	but	Python3	is	not.

[jason@linuxbox	~]$	python	--version

Python	2.7.6

[jason@linuxbox	~]$	python3	--version

python3:	command	not	found

Installing	Python	on	Debian	Based	Linux	Distributions

To	install	Python	3	on	Debian	based	distributions	such	Debian,	Ubuntu,	and	Linux	Mint,	run	apt-get
install	 -y	 python3	 idle3.	 Installing	 software	 requires	 root	 privileges	 so	 execute	 the	 apt
command	as	the	root	user	or	precede	the	command	with	sudo.	Note	that	sudo	will	only	work	if	it	has
been	configured,	either	by	the	distribution,	you,	or	 the	system	administrator.	Here	is	an	example	of
installing	Python	3	on	an	Ubuntu	Linux	system	using	sudo.

[jason@ubuntu	~]$	sudo	apt-get	install	-y	python3	idle3

...

Setting	up	python3

[jason@ubuntu	~]$	python3	--version

3.4.1

To	perform	the	installation	as	root,	log	into	the	Linux	system	as	root	or	switch	to	the	root	user	using
the	su	-	command.

[jason@ubuntu	~]$	su	-

Password:

[root@ubuntu	~]#	sudo	apt-get	install	-y	python3	idle3

...

Setting	up	python3

[root@ubuntu	~]#	python3	--version

3.4.1

[root@ubuntu	~]#	exit

[jason@ubuntu	~]$

Installing	Python	on	RPM	Based	Linux	Distributions

For	RPM	based	Linux	distributions	such	as	CentOS,	Fedora,	RedHat,	and	Scientific	Linux	attempt	to
install	Python	3	using	the	yum	install	-y	python3	python3-tools	command.	Be	sure	to	run	the
command	as	 root	or	precede	 it	with	sudo	 as	 installing	 software	 requires	 root	 privileges.	Note	 that
sudo	 will	 only	 work	 if	 it	 has	 been	 configured,	 either	 by	 the	 distribution,	 you,	 or	 the	 system
administrator.	Here	is	an	example	of	installing	Python	3	on	a	Fedora	Linux	system	using	sudo.

[jason@fedora	~]$	sudo	yum	install	-y	python3	python3-tools

...

Complete!

[jason@fedora	~]$	python3	--version

3.4.1

If	you	get	an	error	message	like	"No	package	python3	available"	or	"Error:	Nothing	to	do,"	then	you



will	have	to	install	Python3	from	source	code.	Start	out	by	installing	the	tools	required	to	build	and
install	Python	by	running	yum	groupinstall	-y	'development	tools'	with	root	privileges.	Next,
install	the	remaining	dependencies	by	running	yum	install	-y	zlib-dev	openssl-devel	sqlite-
devel	bzip2-devel	tk-devel.

[jason@centos	~]$	sudo	yum	groupinstall	-y	'development	tools'

...

Complete!

[jason@centos	~]$	sudo	yum	install	-y	zlib-dev	openssl-devel	sqlite-devel	bzip2-devel	tk-devel

...

Complete!

Next,	visit	the	Python	downloads	page	at	https://www.python.org/downloads	and	click	on	"Download
Python	 3.x.x."	 In	 a	 terminal	 emulator	 application	 navigate	 to	 the	 directory	 where	 Python	 was	 just
saved.	Extract	 the	 contents	 of	 the	 file	 using	tar	 xf	 Python*z.	 Change	 into	 the	 directory	 that	was
created	from	performing	the	extraction	with	cd	Python-*.	Run	./configure	followed	by	make	and
finally,	 as	 root,	 run	make	install.	 If	 sudo	 is	 configured	 on	 your	 system	you	 can	 run	sudo	 make
install.	This	process	will	install	Python	3	into	the	/usr/local/bin	directory.

[jason@centos	~]$	cd	~/Downloads

[jason@centos	~/Downloads]$	tar	xf	Python*z

[jason@centos	~/Downloads/Python-3.4.1]$	cd	Python-*

[jason@centos	~/Downloads/Python-3.4.1]$	./configure

...

creating	Makefile

[jason@centos	~/Downloads/Python-3.4.1]$	make

...

[jason@centos	~/Downloads/Python-3.4.1]$	sudo	make	install

...

[jason@centos	~/Downloads/Python-3.4.1]$	which	python3

/usr/local/bin/python3

[jason@centos	~/Downloads/Python-3.4.1]$	python3	--version

Python	3.4.1

If	you	are	interested	in	learning	more	about	the	Linux	operating	system	I	encourage	you	to	read	Linux
for	 Beginners.	 You	 can	 get	 a	 copy	 by	 visiting	 http://www.LinuxTrainingAcademy.com/linux	 or
http://www.amazon.com/gp/product/B00HNC1AXY.

Preparing	Your	Computer	for	Python

It's	 important	 for	you	 to	 run	 the	Python	 interpreter	 interactively	as	well	 as	 execute	 existing	Python
programs.	When	 using	 the	 Python	 interpreter	 interactively	 you	 can	 type	 in	 Python	 commands	 and
receive	immediate	feedback.	It's	an	excellent	way	to	experiment	with	Python	and	answer	any	of	your
"I	 wonder	 what	 happens	 if	 I	 were	 to	 do	 this"	 type	 of	 questions.	 By	 the	 way,	 Python	 is	 called	 an
interpreter	because	it	translates	the	Python	language	into	a	format	that	is	understood	by	the	underlying
operating	system	and	hardware.

There	are	two	ways	to	start	the	Python	interpreter.	The	first	way	is	to	the	launch	the	IDLE	application.
IDLE	stands	for	"Integrated	DeveLopment	Environment."	The	other	way	to	start	the	Python	interpreter
is	from	the	command	line.	In	Windows	start	the	Command	Prompt	and	type	python.	In	Mac	and	Linux
execute	python3	from	the	command	line.	To	exit	the	Python	interpreter	type	exit()	or	quit().	You

https://www.python.org/downloads
http://www.linuxtrainingacademy.com/linux
http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=ebook0a6b-20&linkId=FOHCNPDD7ZYMUQTK


can	also	exit	the	interpreter	by	typing	Ctrl-d	on	Mac	and	Linux	and	Ctrl-z	on	Windows.	Here	is	an
example	of	running	the	Python	interpreter	from	the	command	line	on	a	Mac	system.

[jason@mac	~]$	python3

Python	3.4.1	(v3.4.1:c0e311e010fc,	May	18	2014,	00:54:21)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	print('Hello')

Hello

>>>	exit()

[jason@mac	~]$

Don't	 worry	 about	 the	 print('Hello')	 line	 just	 yet.	 You	 will	 learn	 the	 details	 of	 that	 and	 other
commands	in	the	following	chapters.	For	now,	just	know	that	you	can	execute	the	Python	command	or
start	the	IDLE	application	to	interact	directly	with	the	Python	interpreter.

Running	Python	Programs

In	 addition	 to	 using	 the	 Python	 interpreter	 interactively,	 you	 will	 need	 a	 way	 to	 create,	 save,	 and
execute	 Python	 programs.	 Python	 programs	 are	 simply	 text	 files	 that	 contain	 a	 series	 of	 Python
commands.	By	convention	Python	programs	end	in	a	.py	extension.

Running	Python	Programs	on	Windows

One	way	to	run	a	Python	program	on	Windows	is	navigate	to	the	location	of	the	file	using	the	File
Explorer	and	double	click	it.	The	disadvantage	of	using	this	method	is	that	when	the	program	exits	the
program's	 window	 is	 closed.	 You	 may	 not	 be	 able	 to	 see	 the	 output	 generated	 by	 the	 program,
especially	 if	 no	 user	 interaction	 is	 required.	A	 better	way	 to	 run	 Python	 programs	 is	 by	 using	 the
command	line,	sometimes	called	the	Command	Prompt	in	Windows.

First,	 let's	make	 sure	 the	Python	 interpreter	 is	 in	our	path.	Using	 the	File	Explorer,	 navigate	 to	 the
folder	where	you	installed	Python.	If	you	accepted	the	defaults	during	the	installation	the	path	will	be
C:\PythonNN,	where	NN	 is	the	version	number.	For	example,	if	you	installed	Python	3.4	it	would	be
C:\Python34.	Next,	navigate	to	the	Tools	folder	and	finally	to	the	Scripts	 folder.	Double	click	on
the	win_add2path	file.	The	full	path	to	this	file	is	C:\Python34\Tools\Scripts\win_add2path.py.
You	will	see	a	window	pop	up	briefly	and	then	disappear.

Locate	the	Command	Prompt	application	and	open	it.	There	are	various	ways	to	do	this	depending	on
what	 version	 of	Windows	 you	 are	 using.	 This	 following	 procedure	will	work	 on	most,	 if	 not	 all,
versions	of	windows.	Press	and	hold	the	Windows	key	and	type	r.	A	prompt	will	open.	Now	type	cmd
and	press	enter.



Running	cmd

You	 can	 also	 search	 for	 the	Command	Prompt.	 For	Windows	Vista	 and	Windows	 7	 click	 the	Start
button,	type	"cmd"	in	the	search	box,	and	press	Enter.	For	Windows	8,	click	on	the	search	icon,	type
"cmd"	in	the	search	box,	and	press	Enter.

Once	you	have	opened	the	Command	Prompt,	you	can	run	Python	interactively	by	typing	python	or
run	 a	 Python	 application	 by	 typing	 python	 program_name.py.	 If	 you	 get	 an	 error	 message	 like
"python'	 is	 not	 recognized	 as	 an	 internal	 or	 external	 command,	 operable	 program	 or	 batch	 file,"
reboot	your	computer	and	try	again.

The	following	example	demonstrates	running	Python	interactively	from	the	command	line	and	then
running	the	hello.py	program.

Executing	a	Python	Program

Running	Python	Programs	on	Mac	and	Linux

In	Mac	and	Linux	you	can	execute	a	Python	program	by	running	python3	program_name.py	 from
the	command	line.	The	Python	interpreter	will	 load	and	execute	the	code	in	the	file	 that	follows	the
Python	command.



Here	are	the	contents	of	the	hello.py	file.

print('Hello')

Here	is	what	you	will	see	when	you	run	the	program.

[jason@mac	~]$	python3	hello.py

Hello

[jason@mac	~]$

In	addition	to	supplying	a	Python	file	to	the	python3	command,	you	can	execute	the	file	directly	by
setting	the	execute	bit	on	the	file	and	specifying	Python	in	the	interpreter	directive	on	the	first	line.	To
set	 the	 execute	bit	 on	 the	 file	 run	chmod	+x	program_name.py	 from	 the	 command	 line.	To	 set	 the
interpreter	directive	make	sure	#!/usr/bin/env	python3	is	the	first	line	in	the	Python	file.	Now	you
can	run	the	Python	program	by	using	a	relative	or	an	absolute	path	to	the	file.

Here	are	the	contents	of	the	hello2.py	file.

#!/usr/bin/env	python3

print('Hello')

The	following	example	demonstrates	how	to	set	the	executable	bit	on	hello2.py,	execute	it	using	a
relative	path,	execute	 it	using	an	absolute	path,	and	execute	 it	by	supplying	 it	as	an	argument	 to	 the
python3	command.

[jason@mac	~]$	chmod	+x	hello2.py

[jason@mac	~]$	./hello2.py

Hello

[jason@mac	~]$	/Users/jason/hello2.py

Hello

[jason@mac	~]$	python3	hello2.py

Hello

[jason@mac	~]$

Note	 that	 is	 safe	 to	 include	 the	 interpreter	 directive	 even	 if	 the	 program	 will	 be	 executed	 on	 a
Windows	system.	Windows	will	simply	ignore	that	line	and	execute	the	remaining	Python	code.

Creating	and	Editing	Python	Source	Code

The	IDLE	application	not	only	allows	you	to	run	the	Python	interpreter	interactively,	it	allows	you	to
create,	edit,	and	execute	Python	programs.	To	create	a	new	Python	program,	go	 to	 the	"File"	menu
and	and	select	"New	File."	To	open	an	existing	Python	file,	go	the	the	"File"	menu	and	select	"Open."
You	can	now	type	in	or	edit	your	Python	program.	Save	your	program	by	accessing	the	"File"	menu
and	 selecting	 "Save."	 To	 run	 the	 program	 press	 "F5"	 or	 go	 to	 the	 "Run"	 menu	 and	 select	 "Run
Module."



IDLE

Since	Python	source	code	is	nothing	more	than	a	text	file	you	are	not	limited	to	the	IDLE	editor.	You
can	use	your	favorite	 text	editor	 to	create	Python	files	and	execute	 them	from	the	command	line	as
previously	 discussed.	 There	 are	 many	 great	 text	 editors	 available.	 Here	 are	 some	 of	 my	 favorite
editors	for	Windows,	Mac,	and	Linux.

Windows

Geany:	http://www.geany.org/
JEdit:	http://www.jedit.org/
Komodo	Edit:	http://komodoide.com/komodo-edit/
Notepad++:	http://notepad-plus-plus.org/

Mac

JEdit:	http://www.jedit.org/
Komodo	Edit:	http://komodoide.com/komodo-edit/
Sublime	Text:	http://www.sublimetext.com/
TextWrangler:	http://www.barebones.com/products/textwrangler/

Linux

Emacs:	https://www.gnu.org/software/emacs/
Geany:	http://www.geany.org/
JEdit:	http://www.jedit.org/
Komodo	Edit:	http://komodoide.com/komodo-edit/
Sublime	Text:	http://www.sublimetext.com/
Vim:	http://www.vim.org/

Note:	When	writing	Python	source	code	you	will	be	using	an	indentation	of	four	spaces.	I	recommend
configuring	your	editor	to	insert	four	spaces	when	you	press	the	tab	key.	Also,	configure	your	editor
to	save	files	using	Unix	line	endings.	This	ensure	your	programs	are	cross-platform	compatible.	You
will	then	be	able	to	use	the	same	file	on	Windows,	Mac,	and	Linux.

Downloading	the	Source	Code	Examples

http://www.geany.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://notepad-plus-plus.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
https://www.gnu.org/software/emacs/
http://www.geany.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://www.sublimetext.com/
http://www.vim.org/


If	 you	 would	 like	 to	 download	 the	 examples	 from	 this	 book	 visit
http://www.LinuxTrainingAcademy.com/python-for-beginners.	 Even	 though	 it	 may	 be	 easier	 to
simply	look	at	and	run	the	code	examples,	it	is	more	beneficial	for	you	to	take	the	extra	time	to	type
them	out	yourself.	By	typing	the	source	code	in	it	reinforces	what	you	are	learning.	It	also	gives	you
the	 practical	 experience	 of	 fixing	 issues	 that	 arise	 when	 you	 are	 creating	 code	 of	 your	 own.	 For
example,	you	will	have	 to	 find	and	 spot	 spelling	mistakes	and	 find	 the	 syntax	errors	 in	your	code.
Details	like	spacing,	spelling,	capitalization,	and	punctuation	marks	are	crucial	to	writing	functional
programs.	 Of	 course,	 if	 you	 get	 stuck	 on	 an	 exercise	 look	 at	 the	 examples	 and	 try	 to	 spot	 the
differences	between	your	code	and	the	code	you	have	downloaded	and	read	in	this	book.

Review

Install	Python.	Use	Python	3	unless	you	have	a	need	to	use	Python	2.	If	you	do,	use	Python	2.7.
Run	Python	interactively	by	using	IDLE	or	by	executing	the	Python	command	at	 the	command
line.	Use	python	for	Windows	and	python3	for	Mac	and	Linux.
Run	 Python	 programs	 in	 IDLE	 by	 pressing	 "F5"	 or	 by	 navigating	 to	 the	 "Run"	 menu	 and
selecting	 "Run	 Module."	 You	 can	 also	 run	 Python	 programs	 from	 the	 command	 line	 by
executing	 the	Python	command	 followed	by	a	Python	 file.	For	Windows	 the	 format	 is	python
program_name.py.	For	Mac	and	Linux	the	format	is	python3	program_name.py.
Use	IDLE	to	edit	your	Python	source	code	or	use	a	text	editor	of	your	choice.
Download	 the	 example	 source	 code	 from	 http://www.LinuxTrainingAcademy.com/python-for-
beginners.

Resources

Integrated	 Development	 Environments	 for	 Python:
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
Open	the	Command	Prompt	in	Windows:	http://www.wikihow.com/Open-the-Command-Prompt-
in-Windows
Python	3	Installation	Video	for	Linux:	https://www.youtube.com/watch?v=RLPYBxfAud4
Python	3	Installation	Video	for	Mac:	https://www.youtube.com/watch?v=EZ_6tmtbDSM
Python	3	Installation	Video	for	Windows:	https://www.youtube.com/watch?v=CihHoWzmFe4
Should	 I	 use	 Python	 2	 or	 Python	 3	 for	 my	 development	 activity?
https://wiki.python.org/moin/Python2orPython3
Source	 Code	 Examples	 for	 this	 Book:	 http://www.LinuxTrainingAcademy.com/python-for-
beginners

http://www.linuxtrainingacademy.com/python-for-beginners/?utm_source=python-for-beginners&utm_medium=ebook&utm_term=ebook&utm_content=ebook&utm_campaign=python-for-beginners
http://www.linuxtrainingacademy.com/python-for-beginners/?utm_source=python-for-beginners&utm_medium=ebook&utm_term=ebook&utm_content=ebook&utm_campaign=python-for-beginners
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.wikihow.com/Open-the-Command-Prompt-in-Windows
https://www.youtube.com/watch?v=RLPYBxfAud4
https://www.youtube.com/watch?v=EZ_6tmtbDSM
https://www.youtube.com/watch?v=CihHoWzmFe4
https://wiki.python.org/moin/Python2orPython3
http://www.linuxtrainingacademy.com/python-for-beginners/?utm_source=python-for-beginners&utm_medium=ebook&utm_term=ebook&utm_content=ebook&utm_campaign=python-for-beginners


Chapter	1	-	Variables	and	Strings
Variables

Variables	are	storage	 locations	 that	have	a	name.	Said	another	way,	variables	are	name-value	pairs.
You	can	assign	values	to	a	variable	and	recall	those	values	by	the	variable	name.	To	assign	a	value	to
a	variable,	use	the	equals	sign.	The	format	is	variable_name	=	value.

In	this	example	the	value	of	apple	is	assigned	to	the	variable	called	fruit.

fruit	=	'apple'

You	can	change	the	value	of	a	variable	by	reassigning	it.	Here	 is	how	to	set	 the	value	of	 the	fruit
variable	to	the	value	of	orange.

fruit	=	'orange'

Note	 that	 there	 is	 nothing	 significant	 about	 the	 variable	 named	 fruit.	We	 could	 have	 easily	 used
produce,	 crop,	 food,	 or	 almost	 any	 other	 variable	 name	 that	 you	 can	 think	 of.	When	 choosing	 a
variable	name,	pick	something	that	represents	the	data	the	variable	will	hold.	You	may	know	what	a
variable	named	x	represents	today,	but	if	you	come	back	to	the	code	a	few	months	from	now	you	may
not.	However,	if	you	encounter	a	variable	named	fruit	chances	are	you	can	guess	what	data	it	will
hold.

Variable	 names	 are	 case	 sensitive.	 The	 variables	 Fruit	 and	 fruit	 are	 two	 distinct	 variables.	 By
convention,	variables	are	 in	all	 lower	case	 letters,	but	 it	 is	not	a	 requirement.	Variable	names	must
start	with	a	letter.	They	can	contain	numbers,	but	variable	names	cannot	start	with	a	number.	You	can
also	use	the	underscore	(_)	character	 in	variable	names.	You	cannot	use	a	hyphen	(-),	plus	sign	(+)
and	 other	 various	 symbols	 in	 variable	 names.	Whenever	 you	 get	 the	 urge	 to	 use	 a	 hyphen,	 use	 an
underscore	instead.

Here	are	some	examples	of	valid	variable	names.

first3letters	=	'ABC'

first_three_letters	=	'ABC'

firstThreeLetters	=	'ABC'

Strings

A	string	is	used	to	represent	text.	In	the	previous	examples	the	text	apple,	orange,	and	ABC	are	strings.
In	 Python	 strings	 are	 surrounded	 by	 quotes.	 Let's	 revisit	 our	 first	 example	 of	 creating	 a	 variable
named	fruit	and	assigning	it	the	string	apple.

fruit	=	'apple'

Strings	can	also	be	encapsulated	in	double	quotes.



fruit	=	"apple"

Using	Quotes	within	Strings

Python	expects	matching	quotation	marks	for	strings.	When	you	start	a	string	definition	with	a	double
quotation	mark,	the	next	double	quotation	mark	that	Python	encounters	is	interpreted	as	the	end	of	the
string.	The	same	is	true	for	single	quotation	marks.	If	you	start	a	string	with	a	single	quotation	mark,
the	next	single	quotation	mark	represents	the	end	of	that	string.

If	 you	want	 to	 include	 double	 quotes	 in	 a	 string	 you	 can	 place	 them	 inside	 single	 quotes	 as	 in	 the
following	example.

sentence	=	'She	said,	"That	is	a	great	tasting	apple!"'

If	you	want	to	include	single	quotes	in	a	string,	enclose	the	string	in	double	quotation	marks.

sentence	=	"That's	a	great	tasting	apple!"

What	if	you	wanted	to	use	both	single	and	double	quotes	in	the	same	string?	At	this	point	you	need	to
escape	 the	 offending	 quotation	 character	 by	 prepending	 a	 backslash	 (\).	 The	 next	 example
demonstrations	how	to	escape	the	following	string	when	using	double	and	single	quotes.

She	said,	"That's	a	great	tasting	apple!"

sentence_in_double	=	"She	said,	\"That's	a	great	tasting	apple!\""

sentence_in_single	=	'She	said,	"That\'s	a	great	tasting	apple!"'

Indexing

Each	character	in	a	string	is	assigned	an	index.	String	indices	are	zero	based,	meaning	that	the	first
character	in	a	string	has	an	index	of	0,	the	second	character	has	an	index	of	1,	etc.

String:			a	p	p	l	e

	Index:			0	1	2	3	4

To	 access	 the	 character	 at	 a	 given	 index	 append	[N]	 to	 a	 string	where	N	 is	 the	 index	 number.	 The
following	example	creates	a	variable	named	a	and	assigns	it	the	character	in	position	0	of	the	string
apple.	Likewise,	a	variable	of	e	is	created	using	the	character	from	position	4	of	apple.

a	=	'apple'[0]

e	=	'apple'[4]

Since	 variables	 are	 simply	 names	 that	 represent	 their	 values,	 the	 [N]	 syntax	 will	 also	 work	 with
variables.	In	the	following	example	first_char	will	be	assigned	the	value	a.

fruit	=	'apple'

first_char	=	fruit[0]

Built-in	Functions



A	function	is	a	section	of	reusable	code	that	performs	an	action.	A	function	has	a	name	and	is	called,
or	executed,	by	that	name.	Optionally,	functions	can	accept	arguments	and	return	data.

The	print()	Function

Python	 includes	 many	 built-in	 functions,	 one	 of	 which	 is	 the	 print()	 function.	 When	 a	 value	 is
provided	as	an	argument	to	the	print()	function	it	displays	that	value	to	the	screen.	You	can	supply
values	directly	to	the	print	statement	or	pass	in	variables.

fruit	=	'apple'

print(fruit)

print('orange')

Output:

apple

orange

The	len()	Function

Another	 built-in	 function	 is	 the	 len()	 function.	When	 a	 string	 is	 provided	 as	 an	 argument	 to	 the
len()	 function	 it	 returns	 the	 length	 of	 that	 string.	 Said	 another	way,	 len()	 returns	 the	 number	 of
characters	in	a	string.

In	this	example	the	value	of	apple	is	assigned	to	the	variable	named	fruit.	Next	we	assign	the	result
of	 len(fruit)	 to	 the	 fruit_len	 variable.	 Finally	 we	 display	 that	 value	 to	 the	 screen	 using	 the
print(fruit_len)	function.

fruit	=	'apple'

fruit_len	=	len(fruit)

print(fruit_len)

Output:

5

You	 can	 also	 pass	 the	 len()	 function	 to	 the	 print()	 function	 and	 skip	 the	 intermediary	 step	 of
assigning	it	to	a	variable.	This	works	because	len(fruit)	is	evaluated	first	and	its	value	is	used	by
the	print()	function.

fruit	=	'apple'

print(len(fruit))

Output:

5

You	can	even	skip	using	variables	all	together.

print(len('apple'))



Output:

5

String	Methods

Without	going	 too	 in	depth	on	 the	subject	of	Object	Oriented	Programming	(OOP),	 it	 is	helpful	 to
understand	 a	 couple	 of	 concepts	 before	 proceeding.	 The	 first	 thing	 to	 know	 is	 that	 everything	 in
Python	 is	an	object.	Also,	every	object	has	a	 type.	You	have	already	been	 learning	about	 the	string
data	type	and	we	will	cover	other	types	throughout	the	course	of	this	book.

Let's	get	back	 to	strings.	For	example,	'apple'	 is	an	object	with	a	 type	of	"str,"	which	 is	 short	 for
string.	Said	another	way,	'apple'	 is	a	string	object.	If	we	assign	the	value	of	apple	 to	 the	variable
fruit	using	fruit	=	'apple',	then	fruit	is	also	a	string	object.	Remember	that	variables	are	names
that	represent	their	values.

As	previously	mentioned,	a	function	is	a	section	of	reusable	code	that	performs	an	action.	Thus	far
you	have	been	using	built-in	functions	like	print()	and	len().	Objects	also	have	functions,	but	they
are	 not	 called	 functions.	 They	 are	 called	 methods.	 Methods	 are	 functions	 that	 are	 run	 against	 an
object.	To	 call	 a	method	on	 an	object,	 follow	 the	object	with	 a	 period,	 then	 the	method	name,	 and
finally	a	set	of	parenthesis.	Enclose	any	parameters	in	the	parenthesis.

The	lower()	String	Method

The	lower()	method	of	a	string	object	returns	a	copy	of	the	string	in	all	lower	case	letters.

fruit	=	'Apple'

print(fruit.lower())

Output:

apple

The	upper()	String	Method

The	upper()	string	method	returns	a	copy	of	the	string	in	all	upper	case	letters.

fruit	=	'Apple'

print(fruit.upper())

Output:

APPLE

String	Concatenation

To	 concatenate,	 or	 combine,	 two	 strings	 use	 the	 plus	 sign.	You	 can	 think	 of	 this	 as	 adding	 strings
together.	 You	 can	 concatenate	 multiple	 strings	 by	 using	 additional	 plus	 signs	 and	 strings.	 In	 the



following	example	notice	how	spaces	are	included	in	the	strings.	String	concatenation	only	combines
the	strings	as	they	are.

print('I	'	+	'love	'	+	'Python.')

print('I'	+	'	love'	+	'	Python.')

Output:

I	love	Python.

I	love	Python.

If	you	do	not	include	extra	spaces,	it	would	look	like	this.

print('I'	+	'love'	+	'Python.')

Output:

IlovePython.

The	following	example	demonstrates	string	concatenation	using	variables.

first	=	'I'

second	=	'love'

third	=	'Python'

sentence	=	first	+	'	'	+	second	+	'	'	+	third	+	'.'

print(sentence)

Output:

I	love	Python.

Repeating	Strings

When	 working	 with	 strings,	 the	 asterisk	 is	 the	 repetition	 operator.	 The	 format	 is	 'string'	 *

number_of_times_to_repeat.	For	example,	if	you	want	to	display	a	hyphen	ten	times,	use	'-'	*	10.

print('-'	*	10)

Output:

----------

You	don't	have	to	use	repetition	with	just	single	character	strings.

happiness	=	'happy	'	*	3

print(happiness)

Output:

happy	happy	happy

The	str()	Function



In	an	upcoming	chapter	you	will	be	learning	about	number	data	types.	For	now,	just	know	that	unlike
strings,	 numbers	 are	not	 enclosed	 in	quotation	marks.	To	 concatenate	 a	 string	with	 a	 number,	 first
convert	the	number	to	a	string	with	the	built-in	str()	function.	The	str()	function	turns	non-strings,
such	as	numbers,	into	strings.

version	=	3

print('I	love	Python	'	+	str(version)	+	'.')

Output:

I	love	Python	3.

Here	is	what	happens	when	a	number	is	not	converted	to	a	string	before	concatenation	is	attempted.

version	=	3

print('I	love	Python	'	+	version	+	'.')

output

		File	"string_example.py",	line	2,	in	<module>

				print('I	love	Python	'	+	version)

TypeError:	Can't	convert	'int'	object	to	str	implicitly

Formatting	Strings

Instead	of	concatenating	strings	to	produce	the	format	you	desire,	you	can	call	the	format()	method
on	a	string.	Create	placeholders,	also	known	as	format	fields,	by	using	curly	braces	in	the	string	and
pass	in	values	for	those	fields	to	format().

By	default	 the	 first	pair	of	curly	braces	will	be	 replaced	by	 the	 first	value	passed	 to	format(),	 the
second	pair	of	curly	braces	will	be	replaced	by	the	second	value	passed	to	format(),	and	so	on.	Here
is	an	example.

print('I	{}	Python.'.format('love'))

print('{}	{}	{}'.format('I',	'love',	'Python.'))

Output:

I	love	Python.

I	love	Python.

Notice	that	when	you	pass	multiple	objects	to	a	function	or	method	you	separate	them	using	a	comma.
format('I',	'love',	'Python.').

You	can	explicitly	specify	which	positional	parameter	will	be	used	for	a	format	field	by	providing	a
number	 inside	 the	braces.	{0}	will	 be	 replaced	with	 the	 first	 item	passed	 to	format(),	{1}	 will	 be
replaced	by	the	second	item	passed	in,	etc.

print('I	{0}	{1}.		{1}	{0}s	me.'.format('love',	'Python'))

Output:



I	love	Python.		Python	loves	me.

Here	is	a	formatting	example	that	uses	variables.

first	=	'I'

second	=	'love'

third	=	'Python'

print('{}	{}	{}.'.format(first,	second,	third))

Output

I	love	Python.

We	can	now	 rewrite	our	previous	 example	 that	 combined	 strings	 and	numbers	using	 the	format()
method.	This	eliminates	the	need	to	use	the	str()	function.

version	=	3

print('I	love	Python	{}.'.format(version))

Output

I	love	Python	3.

You	 can	 also	 supply	 a	 format	 specification.	 Format	 specifications	 are	 contained	 within	 the	 curly
braces	and	begin	with	a	colon.	To	create	a	 field	with	a	minimum	character	width	 supply	a	number
following	the	colon.	The	format	field	of	{0:8}	translates	to	"use	the	first	value	provided	to	format()
and	make	 it	at	 least	eight	characters	wide."	The	format	 field	of	{1:8}	means	"use	 the	second	value
provided	to	format()	and	make	it	at	least	eight	characters	wide."	This	method	can	be	used	to	create
tables,	for	instance.

print('{0:8}	|	{1:8}'.format('Fruit',	'Quantity'))

print('{0:8}	|	{1:8}'.format('Apple',	3))

print('{0:8}	|	{1:8}'.format('Oranges',	10))

Output:

Fruit				|	Quantity

Apple				|								3

Oranges		|							10

To	control	the	alignment	use	<	for	left,	^	for	center,	and	>	for	right.	If	no	alignment	is	specified,	left
alignment	is	assumed.	Building	on	our	previous	example,	let's	left	align	the	numbers.

print('{0:8}	|	{1:<8}'.format('Fruit',	'Quantity'))

print('{0:8}	|	{1:<8}'.format('Apple',	3))

print('{0:8}	|	{1:<8}'.format('Oranges',	10))

Output:

Fruit				|	Quantity

Apple				|	3

Oranges		|	10

You	can	also	specify	a	data	type.	The	most	common	case	is	to	use	f	which	represents	a	float.	Floats,



or	floating	point	numbers,	will	be	covered	in	detail	in	the	next	chapter.	You	can	specify	the	number	of
decimal	places	by	using	.Nf	where	N	 is	 the	number	of	decimal	places.	A	common	currency	format
would	be	.2f	which	specifies	two	decimal	places.	Here	is	what	our	table	might	look	like	after	we	take
a	couple	of	bites	out	of	an	apple.

print('{0:8}	|	{1:<8}'.format('Fruit',	'Quantity'))

print('{0:8}	|	{1:<8.2f}'.format('Apple',	2.33333))

print('{0:8}	|	{1:<8.2f}'.format('Oranges',	10))

Output:

Fruit				|	Quantity

Apple				|	2.33

Oranges		|	10.00

Getting	User	Input

Use	the	built-in	function	input()	 to	accept	standard	 input.	By	default,	 standard	 input	comes	from	a
person	typing	at	a	keyboard.	This	allows	you	to	prompt	the	user	for	input.	In	advanced	cases	standard
input	can	come	from	other	sources.	For	example,	you	can	send	the	output	from	one	command	as	the
standard	 input	 to	 another	 command	 using	 pipes.	 (For	 more	 info	 on	 this	 topic	 refer	 to	 Linux	 for
Beginners	at	http://www.linuxtrainingacademy.com/linux.)

You	can	pass	in	a	prompt	to	display	to	the	input()	function.

fruit	=	input('Enter	a	name	of	a	fruit:	')

print('{}	is	a	lovely	fruit.'.format(fruit))

Output

Name	a	fruit:	apple

apple	is	a	lovely	fruit.

Review

Variables	are	names	that	store	values.
Variables	must	start	with	a	letter,	but	may	contain	numbers	and	underscores.
Assign	values	to	variables	using	the	variable_name	=	value	syntax.
Strings	are	surrounded	by	quotation	marks.
Each	character	in	a	string	is	assigned	an	index.
A	function	is	reusable	code	that	performs	an	action.

Built-in	functions:
print():	Displays	values.
len():	Returns	the	length	of	an	item.
str():	Returns	a	string	object.
input():	Reads	a	string.

Everything	in	Python	is	an	object.
Objects	can	have	methods.
Methods	are	functions	that	operate	on	an	object.

http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/linux


String	methods:
uppper():	Returns	a	copy	of	the	string	in	uppercase.
lower():	Returns	a	copy	of	the	string	in	lowercase.
format():	Returns	a	formatted	version	of	the	string.

Exercises

Animal,	Vegetable,	Mineral

Write	 a	 Python	 program	 that	 uses	 three	 variables.	 The	 variables	 in	 your	 program	will	 be	animal,
vegetable,	and	mineral.	Assign	a	 string	value	 to	each	one	of	 the	variables.	Your	program	should
display	"Here	is	an	animal,	a	vegetable,	and	a	mineral."	Next,	display	the	value	for	animal,	followed
by	vegetable,	and	finally	mineral.	Each	one	of	the	values	should	be	printed	on	their	own	line.	Your
program	will	display	four	lines	in	total.

Sample	Output:

Here	is	an	animal,	a	vegetable,	and	a	mineral.

cat

broccoli

gold

I	encourage	you	to	create	a	Python	program	the	produces	the	above	output	before	continuing.	For	the
remainder	of	this	book	the	solutions	to	the	exercises	will	follow	the	exercise	description	and	sample
output.	 If	 you	 want	 to	 attempt	 the	 exercise	 on	 your	 own	 --	 and	 I	 encourage	 you	 to	 do	 so	 --	 stop
reading	now.

Solution

animal	=	'cat'

vegetable	=	'broccoli'

mineral	=	'gold'

print('Here	is	an	animal,	a	vegetable,	and	a	mineral.')

print(animal)

print(vegetable)

print(mineral)

Copy	Cat

Write	a	Python	program	that	prompts	the	user	for	input	and	simply	repeats	what	the	user	entered.

Sample	output:

Please	type	something	and	press	enter:	Hello	there!

You	entered:

Hello	there!

Here	 is	 one	 possible	 solution.	Your	 program	 should	 look	 fairly	 similar,	 but	 you	may	have	 used	 a
different	variable	name,	for	example.	If	you	reproduced	the	previous	output,	you're	doing	great!



user_input	=	input('Please	type	something	and	press	enter:	')

print('You	entered:')

print(user_input)

What	Did	the	Cat	Say?

Write	a	Python	program	that	prompts	for	input	and	displays	a	cat	"saying"	what	was	provided	by	the
user.	Place	the	input	provided	by	the	user	inside	a	speech	bubble.	Make	the	speech	bubble	expand	or
contract	to	fit	around	the	input	provided	by	the	user.

Sample	output:

												_______________________

										<	Pet	me	and	I	will	purr.	>

												-----------------------

										/

	/\_/\			/

(	o.o	)

	>	^	<

Solution

text	=	input('What	would	you	like	the	cat	to	say?	')

text_length	=	len(text)

print('												{}'.format('_'	*	text_length))

print('										<	{}	>'.format(text))

print('												{}'.format('-'	*	text_length))

print('										/')

print('	/\_/\			/')

print('(	o.o	)')

print('	>	^	<')

Output:

What	would	you	like	the	cat	to	say?	Meow

												____

										<	Meow	>

												----

										/

	/\_/\			/

(	o.o	)

	>	^	<

Resources

Common	String	Operations:	https://docs.python.org/3/library/string.html
input()	documentation:	https://docs.python.org/3/library/functions.html?highlight=input#input
len()	documentation:	https://docs.python.org/3/library/functions.html?highlight=input#len
print()	documentation:	https://docs.python.org/3/library/functions.html?highlight=input#print
str()	documentation:	https://docs.python.org/3/library/functions.html?highlight=input#func-str

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/functions.html?highlight=input#input
https://docs.python.org/3/library/functions.html?highlight=input#len
https://docs.python.org/3/library/functions.html?highlight=input#print
https://docs.python.org/3/library/functions.html?highlight=input#func-str


Review
If	 you	 are	 finding	 value	 in	 this	 book	 I	 want	 to	 invite	 you	 to	 go	 to
http://www.linuxtrainingacademy.com/python-book	 or
http://www.amazon.com/gp/product/B00N4IQRD4	 and	 leave	 a	 five	 star	 review.	 Not	 only	 does	 that
encourage	me	to	create	more	resources	for	this	book,	it	also	helps	others	like	you	find	this	content.

http://www.linuxtrainingacademy.com/python-book
http://www.amazon.com/gp/product/B00N4IQRD4/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=ebook0a6b-20&linkId=FOHCNPDD7ZYMUQTK


Chapter	2	-	Numbers,	Math,	and	Comments
If	you	would	like	to	see	a	video	I	created	for	you	that	covers	the	concepts	in	this	chapter	and	includes
a	live	programming	demonstration	visit	http://www.LinuxTrainingAcademy.com/python-math.

In	 the	 previous	 chapter	 you	 learned	 how	 to	 create	 strings	 by	 enclosing	 text	 in	 quotation	 marks.
Numbers	in	Python	require	no	such	special	treatment.	When	you	want	to	use	a	number,	simply	include
it	in	your	source	code.	If	you	want	to	assign	a	number	to	a	variable	use	the	format	of	variable_name
=	number	as	in	this	example.

integer	=	42

float	=	4.2

Python	supports	integers	as	well	as	floating	point	numbers.	Integers	are	whole	numbers,	or	numbers
without	 a	 decimal	 point.	Floating	point	 numbers	 always	 contain	 a	 decimal	 point.	The	data	 type	 for
integers	is	int,	while	the	data	type	for	floating	point	numbers	is	float.

Numeric	Operations

The	Python	 interpreter	 can	perform	 several	 operations	with	numbers.	The	 following	 table	 lists	 the
most	commonly	used	numeric	operations.

Symbol Operation
+ add
- subtract
* multiply
/ divide
** exponentiate
% modulo

You're	probably	familiar	with	+,	-,	*,	and	/.	The	**	operator	 is	for	exponentiation,	which	means	to
"raise	to	the	power	of."	For	example,	2	**	4	means	"2	raised	to	the	power	of	4."	This	is	equivalent	to
2	*	2	*	2	*	2	and	results	in	an	outcome	of	16.

The	percent	sign	performs	the	modulo	operation.	It	simply	returns	the	remainder.	For	example,	3	%	2
is	1	because	three	divided	by	two	is	one	with	a	remainder	of	one.	4	%	2	returns	0	since	four	divided
by	two	is	two	with	a	remainder	of	zero.

Python	allows	you	to	perform	mathematical	calculations	right	in	the	interpreter.

[jason@mac	~]$	python3

Python	3.4.1	(v3.4.1:c0e311e010fc,	May	18	2014,	00:54:21)

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	1	+	2

http://www.LinuxTrainingAcademy.com/python-math


3

>>>	exit()

[jason@mac	~]$

You	can	also	assign	the	resulting	value	of	a	mathematical	operation	to	a	variable	as	in	this	example.

sum	=	1	+	2

difference	=	100	-	1

product	=		3	*	4

quotient	=	8	/	2

power	=	2	**	4

remainder	=	3	%	2

print('Sum:	{}'.format(sum))

print('Difference:	{}'.format(difference))

print('Product:	{}'.format(product))

print('Quotient:	{}'.format(quotient))

print('Power:	{}'.format(power))

print('Remainder:	{}'.format(remainder))

Output:

Sum:	3

Difference:	99

Product:	12

Quotient:	4.0

Power:	16

Remainder:	1

Even	though	the	result	of	8	/	2	is	the	integer	4,	you	will	notice	that	 the	floating	point	number	4.0
was	in	the	output	created	by	the	previous	example.	The	division	operator	(/)	performs	floating	point
division	and	will	always	return	a	floating	point	number.	Also	be	aware	that	if	you	add	an	integer	to	a
floating	point	number	the	result	will	be	a	float.

The	 following	 example	 demonstrates	 how	 you	 can	 even	 perform	 mathematical	 operations	 using
variables.

sum	=	1	+	2

difference	=	100	-	1

new_number	=	sum	+	difference

print(new_number)

print(sum	/	sum)

print(sum	+	1)

Output:

102

1.0

4

Strings	and	Numbers

This	example	creates	a	variable	named	quantity	and	assigns	it	the	numeric	value	of	3.	It	also	creates
a	variable	named	quantity_string	and	assigns	it	the	string	3.



quantity	=	3

quantity_string	=	'3'

If	you	try	to	perform	a	mathematical	operation	against	a	string	you	will	encounter	an	error.	Just	be
aware	that	if	you	surround	a	number	in	quotes	it	becomes	a	string.

quantity_string	=	'3'

total	=	quantity_string	+	2

Output:

Traceback	(most	recent	call	last):

		File	"string_test.py",	line	2,	in	<module>

				total	=	quantity_string	+	2

TypeError:	Can't	convert	'int'	object	to	str	implicitly

The	int()	Function

To	convert	a	string	into	an	integer	use	the	int()	function	and	pass	in	the	string	to	convert.

quantity_string	=	'3'

total	=	int(quantity_string)	+	2

print(total)

Output:

5

The	float()	Function

To	convert	a	string	 into	a	 floating	point	number	use	 the	float()	 function	and	pass	 in	 the	string	 to
convert.

quantity_string	=	'3'

quantity_float	=	float(quantity_string)

print(quantity_float)

Output:

3.0

Comments

Comments	 are	 for	 the	 benefit	 of	 us	 humans.	 Python	 will	 ignore	 any	 comments	 it	 encounters.
Comments	give	you	a	way	to	document	your	code.	It	can	help	summarize	what	is	about	to	happen	in	a
complex	piece	of	code,	for	example.	If	you	or	a	fellow	programmer	need	to	look	at	the	code	at	a	later
date	it	can	help	quickly	explain	what	the	intention	of	the	code	was	when	it	was	written.

A	single	line	comment	is	prefixed	with	an	octothorpe	(#),	also	known	as	a	pound	sign,	number	sign,
or	hash.



#	This	is	a	comment.	Python	ignores	comments.

You	can	chain	multiple	single	line	comments	together.

#	The	following	code:

#					Computes	the	hosting	costs	for	one	server.

#					Determines	the	duration	of	hosting	that	can	be	purchased	given	a	budget.

You	can	also	create	multi-line	comments	using	triple	quotes.	The	comment	begins	right	after	the	first
set	of	triple	quotes	and	ends	right	before	the	next	set	of	triple	quotes.

"""	This	is	the	start	of	the	comment

This	is	another	line.

This	is	the	last	line	in	the	comment.	"""

Here's	another	example.

"""

I've	started	this	comment	down	here.

Python	will	not	try	to	interpret	these	lines	since	they	are	comments.

"""

You	can	even	create	a	single	line	quote	using	the	triple	quote	syntax.

"""This	is	yet	another	comment."""

Going	back	to	our	"What	Does	The	Cat	Say"	exercise	from	the	previous	chapter,	you	can	add	in	some
comments	to	make	your	code	clearer.

#	Get	the	input	from	the	user.

text	=	input('What	would	you	like	the	cat	to	say?	')

#	Determine	the	length	of	the	input.

text_length	=	len(text)

#	Make	the	border	the	same	size	as	the	input.

print('												{}'.format('_'	*	text_length))

print('										<	{}	>'.format(text))

print('												{}'.format('-'	*	text_length))

print('										/')

print('	/\_/\			/')

print('(	o.o	)')

print('	>	^	<')

Review

Unlike	strings,	numbers	require	no	special	decoration.
If	you	enclose	a	number	in	quotes	it	is	actually	a	string.
To	convert	a	string	to	an	integer,	use	the	int()	function.
To	convert	a	string	to	a	float,	use	the	float()	function.
Single	line	comments	begin	with	an	octothorpe	(#).
Multi-line	comments	are	enclosed	in	triple	quotes	(""").



Exercises

Calculate	the	Cost	of	Cloud	Hosting

Let's	 assume	you	 are	 planning	 to	 use	your	Python	 skills	 to	 build	 a	 social	 networking	 service.	You
decide	 to	 host	 your	 application	 on	 servers	 running	 in	 the	 cloud.	You	 pick	 a	 hosting	 provider	 that
charges	$0.51	per	hour.	You	will	launch	your	service	using	one	server	and	want	to	know	how	much	it
will	cost	to	operate	per	day	and	per	month.

Write	a	Python	program	that	displays	the	answers	to	the	following	questions:

How	much	does	it	cost	to	operate	one	server	per	day?
How	much	does	it	cost	to	operate	one	server	per	month?

Solution

Here	is	one	way	to	answer	those	questions	using	Python.	Notice	that	comments	are	used	throughout
the	code.	Also,	keep	in	mind	there	are	multiple	ways	to	solve	the	same	problem.

#	The	cost	of	one	server	per	hour.

cost_per_hour	=	0.51

#	Compute	the	costs	for	one	server.

cost_per_day	=	24	*	cost_per_hour

cost_per_month	=	30	*	cost_per_day

#	Display	the	results.

print('Cost	to	operate	one	server	per	day	is	${:.2f}.'.format(cost_per_day))

print('Cost	to	operate	one	server	per	month	is	${:.2f}.'.format(cost_per_month))

Output:

Cost	to	operate	one	server	per	day	is	$12.24.

Cost	to	operate	one	server	per	month	is	$367.20.

Calculate	the	Cost	of	Cloud	Hosting,	Continued

Building	 on	 the	 previous	 example,	 let's	 also	 assume	 that	 you	 have	 saved	 $918	 to	 fund	 your	 new
adventure.	You	wonder	how	many	days	you	can	keep	one	server	running	before	your	money	runs	out.
Of	course,	you	hope	your	social	network	becomes	popular	and	requires	20	servers	to	keep	up	with
the	demand.	How	much	will	it	cost	to	operate	at	that	point?

Write	a	Python	program	that	displays	the	answers	to	the	following	questions:

How	much	does	it	cost	to	operate	one	server	per	day?
How	much	does	it	cost	to	operate	one	server	per	month?
How	much	does	it	cost	to	operate	twenty	servers	per	day?
How	much	does	it	cost	to	operate	twenty	servers	per	month?
How	many	days	can	I	operate	one	server	with	$918?



Solution

#	The	cost	of	one	server	per	hour.

cost_per_hour	=	0.51

#	Compute	the	costs	for	one	server.

cost_per_day	=	24	*	cost_per_hour

cost_per_month	=	30	*	cost_per_day

#	Compute	the	costs	for	twenty	servers

cost_per_day_twenty	=	20	*	cost_per_day

cost_per_month_twenty	=	20	*	cost_per_month

#	Budgeting

budget	=	918

operational_days	=	budget	/	cost_per_day

#	Display	the	results.

print('Cost	to	operate	one	server	per	day	is	${:.2f}.'.format(cost_per_day))

print('Cost	to	operate	one	server	per	month	is	${:.2f}.'.format(cost_per_month))

print('Cost	to	operate	twenty	servers	per	day	is	${:.2f}.'.format(cost_per_day_twenty))

print('Cost	to	operate	twenty	servers	per	month	is	${:.2f}.'.format(cost_per_month_twenty))

print('A	server	can	operate	on	a	${0:.2f}	budget	for	{1:.0f}	days.'.format(budget,	operational_days))

Output:

Cost	to	operate	one	server	per	day	is	$12.24.

Cost	to	operate	one	server	per	month	is	$367.20.

Cost	to	operate	twenty	servers	per	day	is	$244.80.

Cost	to	operate	twenty	servers	per	month	is	$7344.00.

A	server	can	operate	on	a	$918.00	budget	for	75	days.



Chapter	3	-	Booleans	and	Conditionals
A	boolean	is	a	data	 type	that	can	have	only	two	possible	values:	True	or	False.	You	can	 think	of	a
boolean	as	either	being	on	or	off.	There	 is	no	 in	between	with	booleans.	To	assign	a	boolean	 to	a
variable	use	variable_name	=	boolean,	where	boolean	is	either	True	or	False.	Do	not	use	quotes
around	True	or	False.	Remember,	quotes	are	for	strings.

a_boolean	=	True

the_other_boolean	=	False

print(a_boolean)

print(the_other_boolean)

Output:

True

False

Comparators

The	following	six	operators	compare	one	numeric	value	with	another	and	result	in	a	boolean.

Operator Description
== Equal	to
> Greater	than
>= Greater	than	or	equal
< Less	than
<= Less	than	or	equal
!= Not	equal

When	you	see	1	==	2	you	can	think	"Is	1	equal	to	2?".	If	the	answer	is	yes,	then	it's	True.	If	the	answer
is	no,	then	it's	False.	In	this	example	the	answer	is	no,	so	the	condition	is	False.	Note	that	=	assigns	a
value	to	a	variable	and	==	performs	a	comparison.

is_one_equal_to_two	=	1	==	2

print(is_one_equal_to_two)

Output:

False

Let's	run	the	numbers	1	and	2	through	all	six	comparators	interactively	in	the	Python	interpreter.

>>>	1	==	2

False

>>>	1	>	2

False

>>>	1	>=	2



False

>>>	1	<	2

True

>>>	1	<=	2

True

>>>	1	!=	2

True

Boolean	Operators

Boolean	logic	is	used	extensively	in	computer	programming.	The	boolean	operators	are	and,	or,	and
not.	They	can	be	used	to	compare	two	statements	or	negate	a	statement.	Like	comparators,	they	result
in	a	boolean.

Operator Description
and Evaluates	to	True	if	both	statements	are	true,	otherwise	evaluates	to	False.
or Evaluates	to	True	if	either	of	the	statements	is	true,	otherwise	evaluates	to	False.
not Evaluates	to	the	opposite	of	the	statement.

The	following	is	a	truth	table	that	demonstrates	boolean	operators	and	their	results.

True	and	True	is	True

True	and	False	is	False

False	and	True	is	False

False	and	False	is	False

True	or	True	is	True

True	or	False	is	True

False	or	True	is	True

False	or	False	is	False

Not	True	is	False

Not	False	is	True

Let's	 evaluate	 two	 statements	with	 the	 boolean	and	 operator.	The	 first	 statement	 is	37	 >	 29	 and	 it
evaluates	to	True.	The	second	statement	is	37	<	40	and	also	evaluates	to	True.	37	>	29	and	37	<
40	evaluates	to	True	because	True	and	True	evaluate	to	True.

>>>	37	>	29

True

>>>	37	<	40

True

>>>	37	>	29	and	37	<	40

True

>>>

What	is	the	result	of	37	>	29	or	37	<	40?

>>>	37	>	29	or	37	<	40

True

The	not	boolean	operator	evaluates	to	the	opposite	of	the	statement.	Since	37	>	29	is	True,	not	37	>
29	is	False.



>>>	37	>	29

True

>>>	not	37	>	29

False

The	order	of	operations	for	boolean	operators	is:

not

and

or

For	example,	True	and	False	or	not	False	is	True.	First	not	False	is	evaluated	and	is	True.	Next
True	and	False	is	evaluated	and	is	False.	Finally,	True	or	False	is	evaluated	and	is	True.

>>>	not	False

True

>>>	True	and	False

False

>>>	True	or	False

True

>>>	True	and	False	or	not	False

True

To	control	the	order	of	operations	use	parenthesis.	Anything	surrounded	by	parenthesis	is	evaluated
first	and	as	its	own	unit.	True	and	False	or	not	False	is	the	same	as	(True	and	False)	or	(not
False).	 It's	 also	 the	 same	 as	((True	 and	 False)	 or	 (not	 False)).	 Using	 parenthesis	 not	 only
allows	 you	 to	 get	 away	 with	 not	 memorizing	 the	 order	 of	 operations,	 but	 more	 importantly	 it	 is
explicit	and	clear.

Conditionals

The	 if	 statement	 evaluates	 a	 boolean	 expression	 and	 if	 it	 is	 True	 the	 code	 associated	 with	 it	 is
executed.	Let's	look	at	an	example.

if	37	<	40:

				print('Thirty-seven	is	less	than	forty.')

Output:

Thirty-seven	is	less	than	forty.

Since	the	boolean	expression	37	<	40	is	True	the	code	indented	under	the	if	statement	is	executed.
This	 indented	code	 is	called	a	code	block.	All	 the	statements	 that	are	 the	same	distance	 to	 the	 right
belong	to	that	code	block.	A	code	block	can	contain	one	or	more	lines.	The	block	of	code	ends	when
it	 is	 followed	by	 a	 line	 that	 is	 less	 indented	 than	 the	 current	 code	 block.	Also,	 code	 blocks	 can	 be
nested.	Here	is	a	logical	view	of	code	blocks.

Block	One

				Block	Two

				Block	Two

								Block	Three

Block	One



Block	One

By	convention,	code	blocks	are	 indented	using	 four	 spaces	but	 this	 in	not	 strictly	enforced.	Python
allows	you	to	use	other	levels	of	indentation.	For	example,	using	two	spaces	for	indentation	is	next
most	popular	choice	after	four	spaces.	Be	consistent.	If	you	decide	to	use	two	spaces	for	indentation,
then	 use	 two	 spaces	 throughout	 the	 program.	 However,	 I	 strongly	 recommend	 following	 the
conventions	unless	you	have	a	good	reason	not	to	do	so.	Also,	if	you	encounter	this	error	you	have	a
problem	with	spacing.

IndentationError:	expected	an	indented	block

Let's	get	back	 to	 the	if	 statement.	Notice	 that	 the	 line	 containing	 the	if	 statement	 always	 ends	 in	 a
colon.	Here	is	another	example.

age	=	31

if	age	>=	35:

				print('You	are	old	enough	to	be	the	President.')

print('Have	a	nice	day!')

Output:

Have	a	nice	day!

Since	age	>=	35	is	False	the	Python	code	indented	underneath	the	if	statement	is	not	executed.	The
final	print	function	will	always	execute	because	it	is	outside	of	the	if	statement.	Notice	that	it	is	not
indented.

The	if	 statement	can	be	paired	with	else.	The	code	 indented	under	else	will	 execute	when	 the	if
statement	 is	false.	You	can	think	of	 the	if/else	 statement	meaning,	"If	 the	statement	 is	 true	run	 the
code	underneath	if,	otherwise	run	the	code	underneath	else."

age	=	31

if	age	>=	35:

				print('You	are	old	enough	to	be	the	President.')

else:

				print('You	are	not	old	enough	to	be	the	President.')

print('Have	a	nice	day!')

Output:

You	are	not	old	enough	to	be	the	President.

Have	a	nice	day!

You	can	evaluate	multiple	conditions	by	using	elif,	which	is	short	for	"else	 if."	Like	if	and	else,
you	need	to	end	the	line	of	the	elif	statement	with	a	colon	and	indent	the	code	to	execute	underneath
it.

age	=	31

if	age	>=	35:

				print('You	are	old	enough	to	be	a	Senator	or	the	President.')

elif	age	>=	30:



				print('You	are	old	enough	to	be	a	Senator.')

else:

				print('You	are	not	old	enough	to	be	a	Senator	or	the	President.')

print('Have	a	nice	day!')

Output:

You	are	old	enough	to	be	a	Senator.

Have	a	nice	day!

Since	age	>=	35	is	False,	the	code	underneath	the	if	statement	did	not	execute.	Since	age	>=	30	is
True	 the	 code	 underneath	 elif	 did	 execute.	 The	 code	 under	 else	 will	 only	 execute	 if	 all	 of	 the
preceding	if	and	elif	statements	evaluate	to	False.	Also,	the	first	if	or	elif	statement	to	evaluate	to
True	will	execute	and	any	remaining	elif	or	else	blocks	will	not	execute.	Here	is	one	final	example
to	illustrate	these	points.

age	=	99

if	age	>=	35:

				print('You	are	old	enough	to	be	a	Representative,	Senator,	or	the	President.')

elif	age	>=	30:

				print('You	are	old	enough	to	be	a	Senator.')

elif	age	>=	25:

				print('You	are	old	enough	to	be	a	Representative.')

else:

				print('You	are	not	old	enough	to	be	a	Representative,	Senator,	or	the	President.'

print('Have	a	nice	day!')

Output:

You	are	old	enough	to	be	a	Representative,	Senator,	or	the	President.

Have	a	nice	day!

Review

Booleans	are	either	True	or	False.
Comparators	compare	one	numeric	value	with	another	and	result	in	a	boolean.
Boolean	operators	(and,	or,	not)	compare	 two	statements	or	negate	a	statement	and	result	 in	a
boolean.
Use	parenthesis	to	control	the	order	of	operations.
A	code	block	is	a	section	of	code	at	the	same	level	of	indentation.
Conditionals	include	if,	if/else,	and	if/elif/else.

Exercises

Walk,	Drive,	or	Fly

Create	a	program	that	asks	the	user	how	far	they	want	to	travel.	If	they	want	to	travel	less	than	three
miles	tell	them	to	walk.	If	they	want	to	travel	more	than	three	miles,	but	less	than	three	hundred	miles,
tell	them	to	drive.	If	they	want	to	travel	three	hundred	miles	or	more	tell	them	to	fly.



Sample	Output:

How	far	would	you	like	to	travel	in	miles?	2500

I	suggest	flying	to	your	destination.

Solution

#	Ask	for	the	distance.

distance	=	input('How	far	would	you	like	to	travel	in	miles?	')

#	Convert	the	distance	to	an	integer.

distance	=	int(distance)

#	Determine	what	mode	of	transport	to	use.

if	distance	<	3:

				mode_of_transport	=	'walking'

elif	distance	<	300:

				mode_of_transport	=	'driving'

else:

				mode_of_transport	=	'flying'

#	Display	the	result.

print('I	suggest	{}	to	your	destination.'.format(mode_of_transport))

Resources

Built-in	Types:	https://docs.python.org/3/library/stdtypes.html
Order	of	Operations	(PEMDAS):	http://www.purplemath.com/modules/orderops.htm
Style	Guide	for	Python	Code	(PEP	8):	http://legacy.python.org/dev/peps/pep-0008/

https://docs.python.org/3/library/stdtypes.html
http://www.purplemath.com/modules/orderops.htm
http://legacy.python.org/dev/peps/pep-0008/


Chapter	4	-	Functions
There	 is	 a	 concept	 in	 computer	 programming	 known	 as	DRY	 --	Don't	 Repeat	Yourself.	 Functions
allow	you	to	write	a	block	of	Python	code	once	and	use	it	many	times.	Instead	of	repeating	several
lines	of	code	each	time	you	need	to	perform	a	particular	 task,	or	function,	simply	call	 the	function
that	contains	 that	code.	This	helps	 in	 reducing	 the	 length	of	your	programs	and	 it	also	gives	you	a
single	place	 to	 change,	 test,	 troubleshoot,	 and	document	 a	given	 task.	This	makes	your	 application
easier	to	maintain.

To	create	a	function	use	the	def	keyword	followed	by	the	name	of	the	function.	A	set	of	parenthesis
must	 follow	 the	 function	 name.	 If	 your	 function	 accepts	 parameters	 include	 names	 of	 those
parameters	within	the	parenthesis	separated	by	commas.	Finally,	end	the	function	definition	line	with	a
colon.	The	code	block	 that	 follows	 the	function	definition	will	be	executed	any	 time	the	function	 is
called.	The	format	is	def	function_name():.	Here	is	a	very	simple	function.

def	say_hi():

				print('Hi!')

If	you	were	to	execute	this	code	no	output	would	be	displayed	because	the	function	was	defined	but
never	called.	When	calling	a	function	be	sure	to	include	the	parenthesis.

def	say_hi():

				print('Hi!')

say_hi()

Output:

Hi!

A	function	has	to	be	defined	before	it	can	be	called.	Define	your	functions	at	the	top	of	your	Python
program.	Here	is	what	happens	if	you	try	to	use	a	function	that	is	not	yet	defined.

say_hi()

def	say_hi():

				print('Hi!')

Output:

Traceback	(most	recent	call	last):

		File	"say_hi.py",	line	1,	in	<module>

				say_hi()

NameError:	name	'say_hi'	is	not	defined

Let's	extend	the	function	to	accept	a	parameter.	You	can	think	of	parameters	as	variables	that	can	be
used	inside	of	the	function.	The	format	is	def	function_name(parameter_name):.

def	say_hi(name):

				print('Hi	{}!'.format(name))



say_hi('Jason')

say_hi('everybody')

Output:

Hi	Jason!

Hi	everybody!

Once	you've	defined	a	parameter	the	function	expects	and	requires	a	value	for	that	parameter.	If	one	is
not	provided	you	will	encounter	an	error.

def	say_hi(name):

				print('Hi	{}!'.format(name))

say_hi()

Output:

		File	"say_hi.py",	line	4,	in	<module>

				say_hi()

TypeError:	say_hi()	missing	1	required	positional	argument:	'name'

To	make	 the	parameter	optional,	 set	a	default	value	 for	 it	using	 the	equals	 sign.	The	 format	 is	def
function_name(parameter_name	=	default_value):.

def	say_hi(name	=	'there'):

				print('Hi	{}!'.format(name))

say_hi()

say_hi('Jason')

Output:

Hi	there!

Hi	Jason!

Functions	can	accept	multiple	parameters.	Simply	include	them	within	the	parenthesis	of	the	function
definition	 and	 separate	 them	 with	 a	 comma.	When	 calling	 the	 function	 supply	 the	 arguments	 and
separate	them	with	a	comma	as	well.

def	say_hi(first,	last):

				print('Hi	{}	{}!'.format(first,	last))

say_hi('Jane',	'Doe')

Output

Hi	Jane	Doe!

The	parameters	accepted	by	a	 function	are	also	called	positional	parameters	because	 their	order	 is
important.	Notice	that	Jane	was	associated	with	first	and	Doe	was	associated	with	last.	You	can	also
explicitly	pass	values	into	a	function	by	name.	When	calling	the	function	supply	the	parameter	name
followed	 by	 the	 equals	 sign	 and	 then	 the	 value	 for	 that	 parameter.	When	 using	 named	 parameters,



order	is	not	important.	Here's	an	example.

def	say_hi(first,	last):

				print('Hi	{}	{}!'.format(first,	last))

say_hi(first	=	'Jane',	last	=	'Doe')

say_hi(last	=	'Doe',	first	=	'John')

Output

Hi	Jane	Doe!

Hi	John	Doe!

Required	and	optional	parameters	can	be	combined	as	in	this	example.

def	say_hi(first,	last='Doe'):

				print('Hi	{}	{}!'.format(first,	last))

say_hi('Jane')

say_hi('John',	'Coltrane')

Output:

Hi	Jane	Doe!

Hi	John	Coltrane!

By	convention	the	first	statement	of	a	function	is	a	documentation	string,	or	docstring	for	short.	To
create	 a	 docstring	 simply	 surround	 text	with	 triple	 double	 quotes.	This	 docstring	 provides	 a	 quick
summary	of	the	function.	When	writing	the	docstring	ask	yourself,	"What	does	this	function	do,"	or
"Why	does	this	function	exist?"	You	can	access	this	docstring	by	using	the	built-in	help()	 function.
Pass	the	name	of	the	function	you	want	to	learn	more	about	to	help().	Type	q	to	exit	the	help	screen.

def	say_hi(first,	last='Doe'):

				"""Say	hello."""

				print('Hi	{}	{}!'.format(first,	last))

help(say_hi)

Output:

Help	on	function	say_hi	in	module	__main__:

say_hi(first,	last='Doe')

				Say	hello.

Not	only	can	functions	perform	a	task,	they	can	return	data	using	the	return	statement.	You	can	return
any	data	 type	 that	 you	 like.	Once	 the	return	 statement	 is	 called,	 no	 further	 code	 in	 the	 function	 is
executed.	Here	is	a	function	that	returns	a	string.

def	odd_or_even(number):

				"""Determine	if	a	number	is	odd	or	even."""

				if	number	%	2	==	0:

								return	'Even'

				else:

								return	'Odd'



odd_or_even_string	=	odd_or_even(7)

print(odd_or_even_string)

Output:

Odd

Here	is	a	similar	function	that	returns	a	boolean.

def	is_odd(number):

				"""Determine	if	a	number	is	odd."""

				if	number	%	2	==	0:

								return	False

				else:

								return	True

print(is_odd(7))

Output

True

You	can	create	functions	that	call	other	functions.	Here's	an	example.

def	get_name():

				"""Get	and	return	a	name"""

				name	=	input('What	is	your	name?	')

				return	name

def	say_name(name):

				"""Say	a	name"""

				print('Your	name	is	{}.'.format(name))

def	get_and_say_name():

				"""Get	and	display	name"""

				name	=	get_name()

				say_name(name)

get_and_say_name()

Output:

What	is	your	name?	Jason

Your	name	is	Jason.

Review

A	function	is	a	block	of	reusable	code	that	performs	an	action	and	can	optionally	return	data.
A	function	must	be	defined	before	it	is	called.
The	basic	syntax	for	defining	a	function	is:	def	function_name(parameter_name):.
A	function	can	accept	parameters.	To	make	a	parameter	optional	supply	a	default	value	for	that
parameter.
You	can	supply	a	docstring	as	the	first	line	of	your	function.



The	return	statement	exits	the	function	and	passes	back	what	follows	return.
Use	the	built-in	help()	function	to	get	help	with	an	object.	When	supplying	a	function	to	help()
the	docstring	contained	within	the	function	is	displayed.

Exercises

Fill	in	the	Blank	Word	Game

Create	 a	 fill	 in	 the	blank	word	game.	Prompt	 the	user	 to	 enter	 a	 noun,	 verb,	 and	 an	 adjective.	Use
those	responses	to	fill	in	the	blanks	and	display	the	story.

Write	a	short	story.	Remove	a	noun,	verb,	and	an	adjective.
Create	a	function	to	get	the	input	from	the	user.
Create	a	function	that	fills	in	the	blanks	in	the	story	you	created.
Ensure	each	function	contains	a	docstring.
After	 the	 noun,	 verb,	 and	 adjective	 have	 been	 collected	 from	 the	 user,	 display	 the	 story	 using
their	input.

Solution

def	get_word(word_type):

				"""Get	a	word	from	a	user	and	return	that	word."""

				if	word_type.lower()	==	'adjective':

								a_or_an	=	'an'

				else:

								a_or_an	=	'a'

				return	input('Enter	a	word	that	is	{0}	{1}:	'.format(a_or_an,	word_type))

def	fill_in_the_blanks(noun,	verb,	adjective):

				"""Fills	in	the	blanks	and	returns	a	completed	story."""

				story	=	"In	this	book	you	will	learn	how	to	{1}.		It's	so	easy	even	a	{0}	can	do	it.		Trust	me,	it	will	be	very	

				return	story

def	display_story(story):

				"""Displays	a	story."""

				print()

				print('Here	is	the	story	you	created.		Enjoy!')

				print()

				print(story)

def	create_story():

				"""Creates	a	story	by	capturing	the	input	and	displaying	a	finished	story."""

				noun	=	get_word('noun')

				verb	=	get_word('verb')

				adjective	=	get_word('adjective')

				the_story	=	fill_in_the_blanks(noun,	verb,	adjective)

				display_story(the_story)

create_story()

Output:



Enter	a	word	that	is	a	noun:	pencil

Enter	a	word	that	is	a	verb:	program

Enter	a	word	that	is	an	adjective:	important

Here	is	the	story	you	created.		Enjoy!

In	this	book	you	will	learn	how	to	program.		It's	so	easy	even	a	pencil	can	do	it.		Trust	me,	it	will	be	very	important.

Resources

DRY:	https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
Documentation	 for	 the	 help()	 built-in	 function:
https://docs.python.org/3/library/functions.html#help
Docstring	Conventions	(PEP	257):	http://legacy.python.org/dev/peps/pep-0257/

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.python.org/3/library/functions.html#help
http://legacy.python.org/dev/peps/pep-0257/


Chapter	5	-	Lists
So	far	you	have	learned	about	the	string,	integer,	float,	and	boolean	data	types.	A	list	is	a	data	type	that
holds	 an	 ordered	 collection	 of	 items.	The	 items,	 or	 values,	 contained	 in	 a	 list	 can	 be	 various	 data
types	themselves.	You	can	even	have	lists	within	lists.

Lists	are	created	using	comma	separated	values	between	square	brackets.	The	format	is	list_name	=
[item_1,	 item_2,	 item_N].	To	 create	 an	 empty	 list	 use:	list_name	 =	 [].	 Items	 in	 a	 list	 can	 be
accessed	by	index.	List	indices	are	zero	based,	meaning	that	the	first	item	in	the	list	has	an	index	of	0,
the	second	item	has	an	index	of	1,	etc.	To	access	an	item	in	a	list	using	an	index,	enclose	the	index	in
square	brackets	immediately	following	the	list	name.	The	format	is	list_name[index].

animals	=	['man',	'bear',	'pig']

print(animals[0])

print(animals[1])

print(animals[2])

Output:

man

bear

pig

Not	only	can	you	access	values	by	index,	you	can	also	set	values	by	index.

animals	=	['man',	'bear',	'pig']

print(animals[0])

animals[0]	=	'cat'

print(animals[0])

Output:

man

cat

You	can	access	items	starting	at	the	end	of	the	list	by	using	a	negative	index.	The	-1	index	represents
the	last	item	in	the	list,	-2	represents	the	second	to	last	item	in	the	list,	and	so	on.

animals	=	['man',	'bear',	'pig']

print(animals[-1])

print(animals[-2])

print(animals[-3])

Output:

pig

bear

man

Adding	Items	to	a	List



To	add	an	item	to	the	end	of	a	list	use	the	append()	method	and	pass	in	the	item	to	add	to	the	list.

animals	=	['man',	'bear',	'pig']

animals.append('cow')

print(animals[-1])

Output:

cow

To	add	multiple	items	to	the	end	of	a	list,	use	the	extend()	method.	The	extend()	method	takes	a	list.
You	pass	in	a	list	by	name	or	create	one	by	surrounding	a	list	of	items	within	brackets.

animals	=	['man',	'bear',	'pig']

animals.extend(['cow',	'duck'])

print(animals)

more_animals	=	['horse',	'dog']

animals.extend(more_animals)

print(animals)

Output:

['man',	'bear',	'pig',	'cow',	'duck']

['man',	'bear',	'pig',	'cow',	'duck',	'horse',	'dog']

You	can	also	add	a	single	item	at	any	point	in	the	list	by	using	the	insert()	method.	Pass	in	the	index
where	you	want	to	add	the	item	followed	by	a	comma	and	then	the	item	itself.	All	of	the	existing	items
in	the	list	will	be	shifted	by	one.

animals	=	['man',	'bear',	'pig']

animals.insert(0,	'horse')

print(animals)

animals.insert(2,	'duck')

print(animals)

Output:

['horse',	'man',	'bear',	'pig']

['horse',	'man',	'duck',	'bear',	'pig']

Slices

To	access	a	portion	of	a	list,	called	a	slice,	specify	two	indices	separated	by	a	colon	within	brackets.
The	slice	starts	at	the	first	index	and	goes	up	to,	but	does	not	include,	the	last	index.	If	the	first	index	is
omitted	0	is	assumed.	If	the	second	index	is	omitted	the	number	of	items	in	the	list	is	assumed.

animals	=	['man',	'bear',	'pig',	'cow',	'duck',	'horse']

some_animals	=	animals[1:4]

print('Some	animals:						{}'.format(some_animals))

first_two	=	animals[0:2]



print('First	two	animals:	{}'.format(first_two))

first_two_again	=	animals[:2]

print('First	two	animals:	{}'.format(first_two_again))

last_two	=	animals[4:6]

print('Last	two	animals:		{}'.format(last_two))

last_two_again	=	animals[-2:]

print('Last	two	animals:		{}'.format(last_two_again))

Output

Some	animals:						['bear',	'pig',	'cow']

First	two	animals:	['man',	'bear']

First	two	animals:	['man',	'bear']

Last	two	animals:		['duck',	'horse']

Last	two	animals:		['duck',	'horse']

String	Slices

You	can	use	slices	with	strings.	You	can	think	of	a	string	as	a	list	of	characters.

part_of_a_horse	=	'horse'[1:3]

print(part_of_a_horse)

Output:

or

Finding	an	Item	in	a	List

The	index()	method	accepts	a	value	as	a	parameter	and	returns	the	index	of	the	first	value	in	the	list.
For	 example,	 if	 there	were	 two	 occurrences	 of	 bear	 in	 the	 animals	 list	 animals.index('bear')
would	return	the	index	of	the	first	occurrence	of	bear.	If	the	value	is	not	found	in	the	list,	Python	will
raise	an	exception.

animals	=	['man',	'bear',	'pig']

bear_index	=	animals.index('bear')

print(bear_index)

Output:

1

Exceptions

An	exception	is	typically	an	indication	that	something	went	wrong	or	something	unexpected	occurred
in	your	program.	If	you	don't	account	for,	or	handle,	exceptions	in	your	program	Python	will	print
out	a	message	explaining	the	exception	and	halt	 the	execute	of	 the	program.	Here	 is	an	example	an
unhandled	exception.



animals	=	['man',	'bear',	'pig']

cat_index	=	animals.index('cat')

print(cat_index)

Output:

Traceback	(most	recent	call	last):

		File	"exception_example.py",	line	2,	in	<module>

				cat_index	=	animals.index('cat')

ValueError:	'cat'	is	not	in	list

These	messages	can	be	extremely	useful	in	correcting	mistakes	in	your	code.	As	you	can	see	from	the
previous	example,	Python	displayed	the	line	number	and	code	that	raised	the	exception.

To	prevent	Python	from	exiting	when	it	encounters	an	exception	you	need	to	tell	your	program	what
to	do	when	it	encounters	one.	Surround	any	code	you	think	may	raise	an	exception	in	a	try/except
block.	Let's	update	the	previous	example	with	a	try/except	block.

animals	=	['man',	'bear',	'pig']

try:

				cat_index	=	animals.index('cat')

except:

				cat_index	=	'No	cats	found.'

print(cat_index)

Output:

No	cats	found.

If	 an	exception	 is	 raised	while	executing	 the	code	 in	 the	try:	 code	block,	 the	code	 in	 the	except:
code	block	is	executed.	If	no	exception	is	encountered	in	the	try:	code	block,	the	code	in	the	except:
code	block	is	skipped	and	not	executed.

Looping	through	a	List

If	 you	 want	 to	 perform	 some	 action	 on	 every	 item	 in	 a	 list,	 use	 a	 for	 loop.	 The	 format	 is	 for
item_variable	in	list_name:.	Like	if	statements	and	function	definitions,	the	for	statement	ends	in
a	 colon.	The	 code	 block	 that	 follows	 the	for	 statement	will	 be	 executed	 for	 every	 item	 in	 the	 list.
Essentially	what	happens	is	that	the	first	item	in	the	list,	list[0]	 is	assigned	to	item_variable	and
the	code	block	is	executed.	The	next	item	in	the	list,	list[1]	is	assigned	to	item_variable	and	 the
code	block	is	executed.	This	process	continues	until	the	list	is	exhausted.	If	there	are	no	items	in	the
list	the	code	block	will	not	be	executed.

Here	is	an	example	that	prints	the	upper	case	version	of	every	item	in	the	animals	list.

animals	=	['man',	'bear',	'pig']

for	animal	in	animals:

				print(animal.upper())

Output

MAN



BEAR

PIG

In	addition	to	the	for	loop	Python	has	a	while	loop.	The	format	is	while	condition:	followed	by	a
code	block.	As	long	as	the	condition	evaluates	to	true	the	code	block	following	the	while	 statement
will	execute.	Typically	the	code	block	will	alter	a	variable	that	is	part	of	the	condition.	At	some	point
the	condition	will	evaluate	 to	 false	and	 the	program	continues	after	 the	while	 loop.	 If	 the	condition
never	evaluates	to	false	it	is	an	infinite	loop.	To	halt	the	execute	of	a	Python	program	type	Ctr-c.	So,
if	you	accidentally	create	an	infinite	loop	you	can	break	out	of	your	program	with	Ctrl-c.

The	following	example	creates	an	index	variable	to	store	an	integer	and	will	be	used	as	the	index	of
the	animals	 list.	The	while	 loop	executes	while	 the	 index	 is	 less	 than	 the	 length	of	 the	animals	 list.
During	 the	 code	 block	 the	 index	 variable	 is	 incremented	 by	 one.	 The	 plus-equals	 operator	 adds	 a
value	 to	 the	variable's	existing	value	and	assigns	 the	new	value	 to	 that	variable.	Using	index	+=	1
will	increment	the	index	variable	by	one.

animals	=	['man',	'bear',	'pig',	'cow',	'duck',	'horse',	'dog']

index	=	0

while	index	<	len(animals):

				print(animals[index])

				index	+=	1

Output:

man

bear

pig

cow

duck

horse

dog

Sorting	a	List

To	sort	a	list	call	the	sort()	method	on	the	list	without	any	arguments.	It	will	reorder	the	current	list.
If	you	want	to	create	a	new	list,	use	the	built-in	sorted()	function	and	supply	a	list	as	an	argument.

animals	=	['man',	'bear',	'pig']

sorted_animals	=	sorted(animals)

print('Animals	list:														{}'.format(animals))

print('Sorted	animals	list:							{}'.format(sorted_animals))

animals.sort()

print('Animals	after	sort	method:	{}'.format(animals))

Output:

Animals	list:														['man',	'bear',	'pig']

Sorted	animals	list:							['bear',	'man',	'pig']

Animals	after	sort	method:	['bear',	'man',	'pig']



List	Concatenation

To	concatenate,	or	combine,	two	or	more	lists	use	the	plus	sign.

animals	=	['man',	'bear',	'pig']

more_animals	=	['cow',	'duck',	'horse']

all_animals	=	animals	+	more_animals

print(all_animals)

Output:

['man',	'bear',	'pig',	'cow',	'duck',	'horse']

To	determine	the	number	of	items	in	a	list	use	the	len()	built-in	function	and	pass	in	a	list.

animals	=	['man',	'bear',	'pig']

print(len(animals))

animals.append('cow')

print(len(animals))

Output:

3

4

Ranges

The	built-in	range()	function	generates	a	list	of	numbers	and	is	often	paired	with	the	for	 statement.
This	comes	in	handy	when	you	want	to	perform	an	action	a	given	number	of	times	or	when	you	want
to	have	access	to	the	index	of	a	list.

The	 range()	 function	 requires	 at	 least	 one	 parameter	 that	 represents	 a	 stop.	 By	 default,	 range()
generates	a	list	that	starts	at	zero	and	continues	up	to,	but	not	including,	the	stop.	To	generate	a	list	that
contains	 N	 items,	 pass	 N	 to	 range()	 like	 so:	 range(N).	 For	 example,	 to	 get	 a	 list	 of	 3	 items	 use
range(3).	The	list	starts	at	zero	and	will	contain	the	numbers	0,	1,	and	2.

for	number	in	range(3):

				print(number)

Output:

0

1

2

You	can	specify	the	start	as	well	as	the	stop.	The	format	is	range(start,	stop).	To	start	a	list	at	one
and	stop	at	three,	use	range(1,	3).	This	will	generate	a	list	that	contains	only	two	items,	1	and	2.

for	number	in	range(1,	3):

				print(number)

1



2

In	 addition	 to	 the	 start	 and	 stop	 parameters	 the	range()	 function	 can	 also	 accept	 a	 step	 parameter
When	using	all	three	parameters	the	list	will	start	at	the	start	value,	stop	just	before	the	stop	value,	and
increment	 the	 list	 by	 the	 step	 value.	 If	 no	 step	 value	 is	 specified,	 as	 in	 the	 previous	 examples,	 its
default	value	is	1.	Let's	generate	a	list	that	includes	all	of	the	odd	numbers	from	1	to	10.

for	number	in	range(1,	10,	2):

				print(number)

Output:

1

3

5

7

9

Here	is	an	example	of	using	the	range()	function	with	a	list	to	print	every	other	item	in	a	list.

animals	=	['man',	'bear',	'pig',	'cow',	'duck',	'horse',	'dog']

for	number	in	range(0,	len(animals),	2):

				print(animals[number])

Output:

man

pig

duck

dog

Review

Lists	 are	 created	 using	 comma	 separated	 values	 between	 square	 brackets.	 The	 format	 is
list_name	=	[item_1,	item_2,	item_N].
Items	 in	 a	 list	 can	 be	 accessed	 by	 index.	 List	 indices	 are	 zero	 based.	 The	 format	 is
list_name[index].
Access	 items	 from	 the	 end	 of	 the	 list	 by	 using	 negative	 indices.	 The	 last	 item	 in	 a	 list	 is
list_name[-1].
Add	items	to	a	list	by	using	the	append()	or	extend()	list	methods.
Access	a	portion	of	a	list	using	a	slice.	The	format	is	list_name(start,	stop)
The	list	index()	method	accepts	a	value	as	a	parameter	and	returns	the	index	of	the	first	value	in
the	list	or	an	exception	if	the	value	is	not	in	the	list.	The	format	is	list_name.index(value).
Loop	 through	 a	 list	 using	 a	 for	 loop.	 The	 format	 is	 for	 item_variable	 in	 list_name:

followed	by	a	code	block.
The	code	block	in	a	while	loop	executes	as	long	as	the	condition	evaluates	to	true.	The	format	is
while	condition:	followed	by	a	code	block.
To	sort	a	list,	use	the	sort()	list	method	or	the	built-in	sorted()	function.
The	built-in	range()	function	generates	a	list	of	numbers.	The	format	is	range(start,	stop,
step).
Unhandled	exceptions	cause	Python	programs	to	terminate.	Handle	exceptions	using	try/except



blocks.

Exercises

To-Do	List

Create	a	Python	program	that	captures	and	displays	a	person's	to-do	list.	Continually	prompt	the	user
for	another	 item	until	 they	enter	 a	blank	 item.	After	 all	 the	 items	are	entered,	display	 the	 to-do	 list
back	to	the	user.

Sample	Output:

Enter	a	task	for	your	to-do	list.		Press	<enter>	when	done:	Buy	cat	food.

Task	added.

Enter	a	task	for	your	to-do	list.		Press	<enter>	when	done:	Mow	the	lawn.

Task	added.

Enter	a	task	for	your	to-do	list.		Press	<enter>	when	done:	Take	over	the	world.

Task	added.

Enter	a	task	for	your	to-do	list.		Press	<enter>	when	done:

Your	To-Do	List:

----------------

Buy	cat	food.

Mow	the	lawn.

Take	over	the	world.

Solution

#	Create	a	list	to	hold	the	to-do	tasks.

to_do_list	=	[]

finished	=	False

while	not	finished:

				task	=	input('Enter	a	task	for	your	to-do	list.		Press	<enter>	when	done:	')

				if	len(task)	==	0:

								finished	=	True

				else:

								to_do_list.append(task)

								print('Task	added.')

#	Display	the	to-do	list.

print()

print('Your	To-Do	List:')

print('-'	*	16)

for	task	in	to_do_list:

				print(task)

Resources

Data	Structures	(Lists):	https://docs.python.org/3/tutorial/datastructures.html
Exceptions:	https://docs.python.org/3/library/exceptions.html
For	Loops:	https://wiki.python.org/moin/ForLoop
Handling	Exceptions:	https://wiki.python.org/moin/HandlingExceptions

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/exceptions.html
https://wiki.python.org/moin/ForLoop
https://wiki.python.org/moin/HandlingExceptions


Sorted:	https://docs.python.org/3/library/functions.html#sorted
While	Loops:	https://wiki.python.org/moin/WhileLoop

https://docs.python.org/3/library/functions.html#sorted
https://wiki.python.org/moin/WhileLoop


Chapter	6	-	Dictionaries
A	dictionary	is	a	data	type	that	holds	key-value	pairs.	These	key-value	pairs	are	called	items.	You	will
sometimes	hear	dictionaries	referred	to	as	associative	arrays,	hashes,	or	hash	tables.

Dictionaries	are	created	using	comma	separated	 items	between	curly	braces.	The	 item	starts	with	a
key,	is	then	followed	by	a	colon,	and	is	concluded	with	a	value.	The	format	is	dictionary_name	=
{key_1:	value_1,	key_N:	value_N}.	To	create	an	empty	dictionary	use:	dictionary_name	=	{}.

Items	 in	 a	 dictionary	 can	 be	 accessed	 by	 key.	 To	 do	 so,	 enclose	 the	 key	 in	 a	 bracket	 immediately
following	the	dictionary	name.	The	format	is	dictionary_name[key].

contacts	=	{'Jason':	'555-0123',	'Carl':	'555-0987'}

jasons_phone	=	contacts['Jason']

carls_phone	=	contacts['Carl']

print('Dial	{}	to	call	Jason.'.format(jasons_phone))

print('Dial	{}	to	call	Carl.'.format(carls_phone))

Output:

Dial	555-0123	to	call	Jason.

Dial	555-0987	to	call	Carl.

Not	 only	 can	 you	 access	 values	 by	 key,	 you	 can	 also	 set	 values	 by	 key.	 The	 format	 is
dictionary_name[key]	=	value.

contacts	=	{'Jason':	'555-0123',	'Carl':	'555-0987'}

contacts['Jason']	=	'555-0000'

jasons_phone	=	contacts['Jason']

print('Dial	{}	to	call	Jason.'.format(jasons_phone))

Output:

Dial	555-0000	to	call	Jason.

Adding	Items	to	a	Dictionary

You	 can	 add	 new	 items	 to	 a	 dictionary	 through	 assignment.	 The	 format	 is
dictionary_name[new_key]	 =	 value.	 To	 determine	 the	 number	 of	 items	 in	 a	 dictionary	 use	 the
len()	built-in	function	and	pass	in	a	dictionary.

contacts	=	{'Jason':	'555-0123',	'Carl':	'555-0987'}

contacts['Tony']	=	'555-0570'

print(contacts)

print(len(contacts))

Output:



{'Jason':	'555-0123',	'Carl':	'555-0987',	'Tony':	'555-0570'}

3

Removing	Items	from	a	Dictionary

To	 remove	 an	 item	 from	 a	 dictionary	 use	 the	 del	 statement.	 The	 format	 is	 del

dictionary_name[key].

contacts	=	{'Jason':	'555-0123',	'Carl':	'555-0987'}

del	contacts['Jason']

print(contacts)

Output:

{'Carl':	'555-0987'}

The	values	stored	in	a	dictionary	do	not	have	to	be	of	the	same	data	type.	In	the	following	example,
the	value	for	the	Jason	key	is	a	list	while	the	value	for	the	Carl	key	is	a	string.

contacts	=	{

				'Jason':	['555-0123',	'555-0000'],

				'Carl':	'555-0987'

}

print('Jason:')

print(contacts['Jason'])

print('Carl:')

print(contacts['Carl'])

Output:

Jason:

['555-0123',	'555-0000']

Carl:

555-0987

When	 assigning	 the	 items	 to	 the	 contacts	 dictionary	 additional	 spaces	 were	 used	 to	 improve
readability.	As	long	as	the	syntax	is	followed	Python	will	ignore	the	extra	spaces.

Since	 the	dictionary_name('key_name')	 stores	 its	 associated	 value,	 you	 can	 act	 upon	 it	 like	 you
would	 the	 actual	 values	 themselves.	 For	 example,	 let's	 use	 a	 for	 loop	 for	 all	 of	 Jason's	 phone
numbers.

contacts	=	{

				'Jason':	['555-0123',	'555-0000'],

				'Carl':	'555-0987'

}

for	number	in	contacts['Jason']:

				print('Phone:	{}'.format(number))

Output:

Phone:	555-0123

Phone:	555-0000



Finding	a	Key	in	a	Dictionary

If	 you	 want	 to	 know	 if	 a	 certain	 key	 exists	 in	 a	 dictionary	 you	 can	 use	 the	 value	 in

dictionary_name	 syntax.	 If	 the	 value	 is	 a	 key	 in	 the	 dictionary	 True	 is	 returned.	 If	 it	 is	 not,	 then
False	is	returned.

contacts	=	{

				'Jason':	['555-0123',	'555-0000'],

				'Carl':	'555-0987'

}

if	'Jason'	in	contacts:

				print("Jason's	phone	number	is:")

				print(contacts['Jason'][0])

if	'Tony'	in	contacts:

				print("Tony's	phone	number	is:")

				print(contacts['Tony'][0])

Output:

Jason's	phone	number	is:

555-0123

Notice	that	'Jason'	in	contacts	evaluates	to	True	so	the	code	block	following	the	if	statement	is
executed.	 Since	 'Tony'	 in	 contacts	 is	 false,	 the	 code	 block	 following	 that	 statement	 does	 not
execute.	Since	contacts['Jason']	holds	a	list	you	can	act	on	it	as	a	list.	So,	contacts['Jason'][0]
returns	the	first	value	in	the	list.

Finding	a	Value	in	a	Dictionary

The	values()	dictionary	method	 returns	a	 list	of	values	 in	 the	dictionary.	Use	 the	value	 in	 list
syntax	to	determine	if	the	value	exists	in	the	list.	If	the	value	is	in	the	list,	True	is	returned.	Otherwise
False	is	returned.

contacts	=	{

				'Jason':	['555-0123',	'555-0000'],

				'Carl':	'555-0987'

}

print	('555-0987'	in	contacts.values())

Output:

True

Looping	through	a	Dictionary

One	format	for	looping	through	items	in	a	dictionary	is	for	key_variable	in	dictionary_name:.
The	code	block	that	follows	the	for	statement	will	be	executed	for	every	 item	in	 the	dictionary.	To
access	the	value	of	the	item	in	the	for	loop,	use	the	dictionary_name[key_variable]	format.	Unlike



lists,	dictionaries	are	unordered.	The	for	loop	guarantees	that	all	of	the	items	in	the	dictionary	will	be
processed,	however	there	is	no	guarantee	in	which	order	they	will	be	processed.

It	is	very	common	to	name	dictionaries	using	a	plural	noun,	such	as	contacts.	The	typical	format	of
the	 for	 loop	 uses	 the	 singular	 form	 of	 the	 dictionary	 name	 as	 the	 key	 variable.	 For	 example,	 for
contact	in	contacts:	or	for	person	in	people:.

contacts	=	{

				'Jason':	'555-0123',

				'Carl':	'555-0987'

}

for	contact	in	contacts:

				print('The	number	for	{0}	is	{1}.'.format(contact,	contacts[contact]))

Output:

The	number	for	Carl	is	555-0987.

The	number	for	Jason	is	555-0123.

You	can	also	use	two	variables	when	defining	a	for	 loop	to	process	 items	in	a	dictionary.	The	first
variable	 will	 contain	 the	 key	 while	 the	 second	 one	 will	 contain	 the	 value.	 The	 format	 is	 for
key_variable,	value_variable	in	dictionary_name.items():.

contacts	=	{'Jason':	'555-0123',	'Carl':	'555-0987'}

for	person,	phone_number	in	contacts.items():

				print('The	number	for	{0}	is	{1}.'.format(person,	phone_number))

Output:

The	number	for	Carl	is	555-0987.

The	number	for	Jason	is	555-0123.

Nesting	Dictionaries

Since	 values	 in	 a	 dictionary	 can	 be	 anything,	 you	 can	 nest	 dictionaries.	 In	 the	 following	 example,
names	are	the	keys	for	the	contact	dictionary,	while	phone	and	email	are	the	keys	used	in	the	nested
dictionary.	Each	person	in	this	contact	list	has	a	phone	number	and	an	email	address.	If	you	want	to
know	Jason's	email	address	you	can	retrieve	that	information	using	contacts['Jason']['email'].

Pay	close	attention	to	the	location	of	colons,	quotation	marks,	commas,	and	braces.	Using	additional
white	space	when	coding	these	types	of	data	structures	can	help	you	better	understand	the	data.

contacts	=	{

				'Jason':	{

								'phone':	'555-0123',

								'email':	'jason@example.com'

				},

				'Carl':	{

								'phone':	'555-0987',

								'email':	'carl@example.com'

				}

}



for	contact	in	contacts:

				print("{}'s	contact	info:".format(contact))

				print(contacts[contact]['phone'])

				print(contacts[contact]['email'])

Output:

Jason's	contact	info:

555-0123

jason@example.com

Carl's	contact	info:

555-0987

carl@example.com

Review

Dictionaries	 hold	 key-value	 pairs,	 called	 items.	 dictionary_name	 =	 {key_1:	 value_1,

key_N:	value_N}

Access	the	values	stored	in	a	dictionary	by	key.	dictionary_name[key]
You	 can	 add	 or	 change	 values	 in	 a	 dictionary	 through	 assignment.	dictionary_name[key]	 =
value

Remove	items	from	a	dictionary	using	the	del	statement.	del	dictionary_name[key]
To	determine	if	a	key	exists	in	a	dictionary	use	the	value	in	dictionary_name	 syntax,	which
returns	a	boolean.
The	values()	dictionary	method	returns	a	list	of	the	values	stored	in	that	dictionary.
Loop	through	a	dictionary	using	the	for	key_variable	in	dictionary_name:	syntax.
Dictionary	values	can	be	of	any	data	type,	including	other	dictionaries.

Exercises

Interesting	Facts

Create	a	dictionary	that	contains	a	list	of	people	and	one	interesting	fact	about	each	of	them.	Display
each	person	and	their	interesting	fact	to	the	screen.	Next,	change	a	fact	about	one	of	the	people.	Also
add	 an	 additional	 person	 and	 corresponding	 fact.	Display	 the	new	 list	 of	 people	 and	 facts.	Run	 the
program	multiple	times	and	notice	if	the	order	changes.

Sample	output:

Jeff:	Is	afraid	of	clowns.

David:	Plays	the	piano.

Jason:	Can	fly	an	airplane.

Jeff:	Is	afraid	of	heights.

David:	Plays	the	piano.

Jason:	Can	fly	an	airplane.

Jill:	Can	hula	dance.

Solution



def	display_facts(facts):

				"""Displays	facts"""

				for	fact	in	facts:

								print('{}:	{}'.format(fact,	facts[fact]))

				print()

facts	=	{

				'Jason':	'Can	fly	an	airplane.',

				'Jeff':		'Is	afraid	of	clowns.',

				'David':	'Plays	the	piano.'

}

display_facts(facts)

facts['Jeff']	=	'Is	afraid	of	heights.'

facts['Jill']	=	'Can	hula	dance.'

display_facts(facts)

Resources

Data	Structures	(Dictionaries):	https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/tutorial/datastructures.html


Chapter	7	-	Tuples
A	tuple	is	an	immutable	list,	meaning	once	it	is	defined	it	cannot	be	changed.	With	normal	lists	you
can	add,	remove,	and	change	the	values	in	the	list,	but	with	tuples	you	cannot.	Tuples,	 like	lists,	are
ordered	 and	 the	 values	 in	 the	 tuple	 can	 be	 accessed	 by	 index.	You	 can	 perform	many	 of	 the	 same
operations	on	a	tuple	that	you	can	on	a	list.	You	can	iterate	over	the	values	in	a	tuple	with	a	for	loop,
you	can	concatenate	 tuples,	you	can	access	values	 from	the	end	of	 the	 tuple	using	negative	 indices,
and	 you	 can	 access	 slices	 of	 a	 tuple.	 Tuples	 are	 created	 using	 comma	 separated	 values	 between
parenthesis.	The	 format	 is	tuple_name	 =	 (item_1,	 item_2,	 item_N).	 If	 you	 only	want	 a	 single
item	 in	 a	 tuple	 that	 single	 item	 must	 be	 followed	 by	 a	 comma.	 The	 format	 is	 tuple_name	 =

(item_1,).

Tuples	 are	 great	 for	 holding	 data	 that	will	 not	 or	 should	 not	 change	 during	 the	 execution	 of	 your
program.	Using	a	tuple	ensures	that	the	values	are	not	accidentally	altered.	For	example,	the	days	of
the	week	should	not	change.

days_of_the_week	=	('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday'

monday	=	days_of_the_week[0]

print(monday)

print()

for	day	in	days_of_the_week:

				print(day)

#	You	cannot	modify	values	in	a	tuple.		This	will	raise	an	exception.

days_of_the_week[0]	=	'New	Monday'

Monday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Traceback	(most	recent	call	last):

		File	"tuples.py",	line	10,	in	<module>

				days_of_the_week[0]	=	'New	Monday'

TypeError:	'tuple'	object	does	not	support	item	assignment

Even	 though	 you	 cannot	 change	 the	 values	 in	 a	 tuple,	 you	 can	 remove	 the	 entire	 tuple	 during	 the
execution	of	your	program	by	using	the	del	statement.

days_of_the_week	=	('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday'

print(days_of_the_week)

del	days_of_the_week

#	This	will	raise	an	exception	since	the	tuple	was	deleted.

print(days_of_the_week)

Output:



('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday',	'Sunday')

Traceback	(most	recent	call	last):

		File	"tuples2.py",	line	5,	in	<module>

				print(days_of_the_week)

NameError:	name	'days_of_the_week'	is	not	defined

Switching	between	Tuples	and	Lists

To	create	a	list	from	a	tuple,	use	the	list()	built-in	function	and	pass	in	the	tuple.	To	create	a	tuple
from	a	list,	use	the	tuple()	built-in	function.	The	built-in	function	type()	will	reveal	an	object's	type.

days_of_the_week_tuple	=	('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday'

days_of_the_week_list	=	list(days_of_the_week_tuple)

print('days_of_the_week_tuple	is	{}.'.format(type(days_of_the_week_tuple)))

print('days_of_the_week_list	is	{}.'.format(type(days_of_the_week_list)))

animals_list	=	['man',	'bear',	'pig']

animals_tuple	=	tuple(animals_list)

print('animals_list	is	{}.'.format(type(animals_list)))

print('animals_tuple	is	{}.'.format(type(animals_tuple)))

Output:

days_of_the_week_tuple	is	<class	'tuple'>.

days_of_the_week_list	is	<class	'list'>.

animals_list	is	<class	'list'>.

animals_tuple	is	<class	'tuple'>.

Looping	through	a	Tuple

If	 you	 want	 to	 perform	 some	 action	 on	 every	 item	 in	 a	 tuple,	 use	 a	 for	 loop.	 The	 format	 is	 for
item_variable	in	tuple_name:	followed	by	a	code	block.

days_of_the_week	=	('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday',	'Sunday')

for	day	in	days_of_the_week:

				print(day)

Output:

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Tuple	Assignment

You	 can	 use	 tuples	 to	 assign	 values	 to	 multiple	 variables	 at	 once.	 In	 the	 following	 example,	 the
variables	 mon,	 tue,	 wed,	 thr,	 fri,	 sat,	 and	 sun	 are	 assigned	 the	 the	 days	 of	 the	 week	 from	 the
days_of_the_week	tuple.



days_of_the_week	=	('Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday'

(mon,	tue,	wed,	thr,	fri,	sat,	sun)	=	days_of_the_week

print(mon)

print(fri)

Output:

Monday

Friday

You	can	also	use	tuple	assignment	with	lists.

contact_info	=	['555-0123',	'jason@example.com']

(phone,	email)	=	contact_info

print(phone)

print(email)

Output:

555-0123

jason@example.com

Tuple	assignment	can	be	used	with	functions	as	well.	For	example,	you	could	create	a	function	that
returns	a	tuple	and	assign	those	values	to	different	variables.

The	 following	 example	 uses	 the	 built-in	 max()	 and	 min()	 functions.	 The	 max()	 built-in	 function
returns	the	largest	item	that	is	passed	to	it.	The	min()	built-in	function	returns	the	smallest	item	that	is
passed	to	it.

def	high_and_low(numbers):

				"""Determine	the	highest	and	lowest	number"""

				highest	=	max(numbers)

				lowest	=	min(numbers)

				return	(highest,	lowest)

lottery_numbers	=	[16,	4,	42,	15,	23,	8]

(highest,	lowest)	=	high_and_low(lottery_numbers)

print('The	highest	number	is:	{}'.format(highest))

print('The	lowest	number	is:	{}'.format(lowest))

Output:

The	highest	number	is:	42

The	lowest	number	is:	4

You	can	use	 tuple	 assignment	 in	 a	 for	 loop.	 In	 the	 following	example	 the	contacts	 list	 contains	 a
series	of	tuples.	Each	time	the	for	loop	is	executed	the	variables	name	and	phone	are	populated	with
the	contents	of	a	tuple	from	the	contacts	list.

contacts	=	[('Jason',	'555-0123'),	('Carl',	'555-0987')]

for	(name,	phone)	in	contacts:

				print("{}'s	phone	number	is	{}.".format(name,	phone))

Output:



Jason's	phone	number	is	555-0123.

Carl's	phone	number	is	555-0987.

Review

A	tuples	is	an	immutable	list,	meaning	once	it	is	defined	the	values	contained	in	the	tuple	cannot
be	changed.
Delete	a	tuple	with	the	del	statement.	del	tuple_name
Tuples	can	be	converted	to	lists	using	the	list()	built-in	function.
Lists	can	be	converted	to	tuples	using	the	tuple()	built-in	function.
You	can	use	tuple	assignment	to	assign	values	to	multiple	variables	at	once.	(var_1,	var_N)	=
(value_1,	value_N)

Tuple	assignment	can	be	used	in	for	loops.
The	max()	built-in	function	returns	the	largest	item	that	is	passed	to	it.
The	min()	built-in	function	returns	the	smallest	item	that	is	passed	to	it.

Exercises

Airport	Codes

Create	a	list	of	airports	that	includes	a	series	of	tuples	containing	an	airport's	name	and	its	code.	Loop
through	the	list	and	utilize	tuple	assignment.	Use	one	variable	to	hold	the	airport	name	and	another
variable	to	hold	the	airport	code.	Display	the	airport's	name	and	code	to	the	screen.

Sample	output:

The	code	for	O’Hare	International	Airport	is	ORD.

The	code	for	Los	Angeles	International	Airport	is	LAX.

The	code	for	Dallas/Fort	Worth	International	Airport	is	DFW.

The	code	for	Denver	International	Airport	is	DEN.

Solution

airports	=	[

				("O’Hare	International	Airport",	'ORD'),

				('Los	Angeles	International	Airport',	'LAX'),

				('Dallas/Fort	Worth	International	Airport',	'DFW'),

				('Denver	International	Airport',	'DEN')

]

for	(airport,	code)	in	airports:

				print('The	code	for	{}	is	{}.'.format(airport,	code))

Resources

list()	documentation:	https://docs.python.org/3/library/functions.html#func-list
max()	documentation:	https://docs.python.org/3/library/functions.html#max
min()	documentation:	https://docs.python.org/3/library/functions.html#min

https://docs.python.org/3/library/functions.html#func-list
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min


type()	documentation:	https://docs.python.org/3/library/functions.html#type
tuple()	documentation:	https://docs.python.org/3/library/functions.html#func-tuple

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#func-tuple


Chapter	8	-	Reading	from	and	Writing	to	Files
You	learned	how	to	accept	standard	input	by	using	the	built-in	input()	function.	You	also	know	how
to	send	data	to	standard	output	--	the	screen	--	using	the	print()	function.	Using	standard	input	and
output	work	well	 for	 certain	 types	 of	 applications,	 but	 if	 you	want	 to	 keep	data	 generated	by	your
program	you	will	need	a	place	 to	store	 that	data.	Also,	 if	you	want	 to	 retrieve	saved	data,	you	will
need	techniques	to	do	that	as	well.	One	common	place	to	store	data	is	a	file.	You	can	read	input	and
write	output	to	a	file,	just	like	you	can	read	input	from	a	keyboard	and	display	output	on	a	screen.

To	 open	 a	 file,	 use	 the	 built-in	 open()	 function.	 The	 format	 is	 open(path_to_file).	 The
path_to_file	 can	be	an	absolute	or	 a	 relative	path	and	 it	 includes	 the	 file	name.	An	absolute	path
contains	the	entire	path	starting	at	the	root	of	the	file	system,	be	that	a	/	in	Mac	or	Linux	or	a	drive
letter	in	Windows.	An	example	of	an	absolute	path	is	/var/log/messages.	A	relative	path	will	contain
just	the	file	name	or	a	portion	of	the	path	which	starts	at	the	current	working	directory.	An	example
relative	path	is	log/messages.	This	example	assumes	the	current	working	directory	is	/var.

Using	forward	slashes	as	a	directory	separator	will	be	familiar	to	those	that	have	ever	worked	on	a
Unix	or	Unix-like	operating	system.	However,	Python	recognizes	forward	slashes	even	when	running
on	the	Windows	operating	system.	The	Windows	operating	system	uses	back	slashes	as	the	directory
separator.	For	example,	C:/Users/jason/Documents/python-notes.txt	 is	a	valid	absolute	path	in
Python.	Also,	Documents/python-notes.txt	is	a	valid	relative	path.

The	open()	function	returns	a	file	object,	sometimes	referred	to	as	a	stream	object,	which	can	be	used
to	perform	operations	on	the	file	passed	to	the	open()	function.	To	read	the	entire	file	in	at	once,	use
the	 read()	 method	 on	 the	 file	 object.	 The	 read()	 method	 returns	 a	 string	 containing	 the	 file's
contents.	Here	is	an	example.

hosts	=	open('/etc/hosts')

hosts_file_contents	=	hosts.read()

print(hosts_file_contents)

Output:

127.0.0.1	localhost

To	 modify	 the	 previous	 example	 to	 work	 on	 a	 Windows	 system,	 set	 the	 hosts	 variable	 to
C:/Windows/System32/drivers/etc/hosts'.

hosts	=	open('C:/Windows/System32/drivers/etc/hosts')

File	Position

When	reading	from	a	file,	Python	keeps	track	of	your	current	position	in	the	file.	Since	the	read()
method	 returns	 the	entire	 file,	 the	current	position	will	be	at	 the	end	of	 the	 file.	 If	you	call	read()
again,	an	empty	string	will	be	returned	since	there	is	no	more	data	to	return	at	your	current	position
in	the	file.	To	change	the	current	file	position,	use	the	seek()	method	and	pass	in	a	byte	offset.	For



example,	to	go	back	to	the	beginning	of	the	file,	use	seek(0).	To	start	at	the	fifth	byte	of	the	file,	use
seek(5).	 Note	 that	 in	 most	 cases	 the	 Nth	 byte	 will	 correspond	 to	 the	 Nth	 character	 in	 the	 file.
However,	 in	some	cases	 it	will	not.	For	UTF-8	encoded	files	you	can	encounter	characters	 that	are
longer	 than	 one	 byte.	 You	 will	 run	 into	 this	 situation	 when	 using	 Kanji,	 Korean,	 or	 Chinese.	 To
determine	your	current	position	in	the	file,	use	the	tell()	method.

hosts	=	open('/etc/hosts')

print('Current	position:	{}'.format(hosts.tell()))

print(hosts.read())

print('Current	position:	{}'.format(hosts.tell()))

print(hosts.read())

hosts.seek(0)

print('Current	position:	{}'.format(hosts.tell()))

print(hosts.read())

Output:

Current	position:	0

127.0.0.1	localhost

Current	position:	20

Current	position:	0

127.0.0.1	localhost

The	read()	method	can	accept	the	number	of	characters	to	read.	The	following	example	will	display
the	first	 three	characters	of	 the	hosts	 file.	 In	 this	case,	 the	first	 three	characters	are	also	first	 three
bytes.

hosts	=	open('/etc/hosts')

print(hosts.read(3))

print(hosts.tell())

Output:

127

3

Closing	a	File

It	is	a	good	practice	to	close	a	file	once	you	are	done	with	it.	If	your	Python	application	opens	many
files	during	 its	execution	 this	could	 lead	 to	a	"Too	many	open	 files"	error.	To	close	a	 file,	use	 the
close()	method	on	the	file	object.

hosts	=	open('/etc/hosts')

hosts_file_contents	=	hosts.read()

print(hosts_file_contents)

hosts.close()

Output:



127.0.0.1	localhost

Each	file	object	has	a	closed	attribute	that	returns	True	if	the	file	is	closed	and	False	if	it	is	not.	You
can	use	this	attribute	to	ensure	a	file	is	closed.

hosts	=	open('/etc/hosts')

hosts_file_contents	=	hosts.read()

print('File	closed?	{}'.format(hosts.closed))

if	not	hosts.closed:

				hosts.close()

print('File	closed?	{}'.format(hosts.closed))

Output:

File	closed?	False

File	closed?	True

Automatically	Closing	a	File

To	 automatically	 close	 a	 file	 use	 the	 with	 statement.	 The	 format	 is	 with	 open(file_path)	 as

file_object_variable_name:	followed	by	a	code	block.	When	the	code	block	finishes	Python	will
automatically	 close	 the	 file.	 Also,	 if	 the	 code	 block	 is	 interrupted	 for	 any	 reason,	 including	 an
exception,	the	file	is	closed.

print('Started	reading	the	file.')

with	open('/etc/hosts')	as	hosts:

				print('File	closed?	{}'.format(hosts.closed))

				print(hosts.read())

print('Finished	reading	the	file.')

print('File	closed?	{}'.format(hosts.closed))

Output:

Started	reading	the	file.

File	closed?	False

127.0.0.1	localhost

Finished	reading	the	file.

File	closed?	True

Reading	a	File	One	Line	at	a	Time

To	 read	 a	 file	 one	 line	 at	 a	 time,	 use	 a	 for	 loop.	 The	 format	 is	 for	 line_variable	 in

file_object_variable:	followed	by	a	code	block.

with	open('file.txt')	as	the_file:

				for	line	in	the_file:

								print(line)

Output:

This	is	line	one.

This	is	line	two.



Finally,	we	are	on	the	third	and	last	line	of	the	file.

The	contents	of	file.txt:

This	is	line	one.

This	is	line	two.

Finally,	we	are	on	the	third	and	last	line	of	the	file.

In	the	output	there	is	a	blank	line	between	each	one	of	the	lines	in	the	file.	This	is	because	the	line
variable	 contains	 the	 complete	 line	 from	 the	 file	 which	 includes	 a	 carriage	 return,	 or	 new	 line,
character.	To	remove	any	trailing	white	space,	including	the	new	line	and	carriage	return	characters,
use	the	rstrip()	string	method.

with	open('file.txt')	as	the_file:

				for	line	in	the_file:

								print(line.rstrip())

Output:

This	is	line	one.

This	is	line	two.

Finally,	we	are	on	the	third	and	last	line	of	the	file.

File	Modes

When	opening	a	file	you	can	specify	a	mode.	The	format	is	open(path_to_file,	mode).	So	far	we
have	been	using	the	default	file	mode	of	r	which	opens	a	file	in	read-only	mode.	If	you	want	to	write
to	a	 file,	clearing	any	of	 its	existing	contents,	use	 the	w	mode.	 If	you	want	 to	create	a	new	file	and
write	 to	 it,	use	 the	x	mode.	 If	 the	 file	 already	exists	 an	exception	will	 be	 raised.	Using	 the	x	mode
prevents	you	from	accidentally	overwriting	existing	files.	If	you	want	keep	the	contents	of	an	existing
file	and	append,	or	add,	additional	data	to	it,	use	the	a	mode.	With	both	the	w	and	a	modes,	if	the	the
file	does	not	already	exist	it	will	be	created.	If	you	want	to	read	and	write	to	the	same	file,	use	the	+
mode.

Mode Description
r Open	for	reading	(default)
w Open	for	writing,	truncating	the	file	first
x Create	a	new	file	and	open	it	for	writing
a Open	for	writing,	appending	to	the	end	of	the	file	if	it	exists
b Binary	mode
t Text	mode	(default)
+ Open	a	disk	file	for	updating	(reading	and	writing)

You	can	also	specify	if	the	file	you	are	working	with	is	a	text	file	or	a	binary	file.	By	default,	all	files
are	opened	as	text	files	unless	otherwise	specified.	Simply	append	a	t	or	b	to	one	of	the	read	or	write
modes.	For	instance,	to	open	a	file	for	reading	in	binary	mode	use	rb.	To	append	to	a	binary	file	use
ab.



Text	files	contain	strings	while	binary	files	contain	a	series	of	bytes.	Said	another	way,	text	files	are
human	 readable	 and	 binary	 files	 are	 not.	 Examples	 of	 binary	 files	 include	 images,	 videos,	 and
compressed	files.

To	check	the	current	mode	of	a	file,	use	the	mode	attribute	on	a	file	object.

with	open('file.txt')	as	the_file:

				print(the_file.mode)

Output:

r

Writing	to	a	File

Now	that	you	know	about	the	different	file	modes,	let's	write	some	data	to	a	file.	It's	as	easy	as	calling
the	write()	method	on	the	file	object	and	supplying	the	text	you	wish	to	write	to	the	file.

with	open('file2.txt',	'w')	as	the_file:

				the_file.write('This	text	will	be	written	to	the	file.')

				the_file.write('Here	is	more	text.')

with	open('file2.txt')	as	the_file:

				print(the_file.read())

Output:

This	text	will	be	written	to	the	file.Here	is	more	text.

The	output	might	not	be	what	you	expected.	The	write()	method	writes	exactly	what	was	provided	to
the	file.	In	the	previous	example	no	carriage	return	or	line	feed	was	provided	so	all	the	text	ended	up
on	the	same	line.	The	\r	sequence	represents	 the	carriage	return	character	and	\n	 represents	a	new
line.	Let's	try	the	example	again,	but	this	time	using	a	line	feed	character	at	the	end	of	the	line.

with	open('file2.txt',	'w')	as	the_file:

				the_file.write('This	text	will	be	written	to	the	file.\n')

				the_file.write('Here	is	more	text.\n')

with	open('file2.txt')	as	the_file:

				print(the_file.read())

Output:

This	text	will	be	written	to	the	file.

Here	is	more	text.

Unix	style	line	endings	only	contain	the	\n	character.	Mac	and	Linux	files	use	this	type	of	line	ending.
Windows	style	line	endings	can	be	created	by	using	\r\n.

Binary	Files



The	main	thing	to	remember	about	binary	files	is	that	you	are	dealing	with	bytes,	not	characters.	The
read()	 method	 accepts	 bytes	 as	 an	 argument	 when	 dealing	 with	 binary	 files.	 Remember	 that	 the
read()	method	accepts	characters	when	the	file	is	opened	as	a	text	file.

with	open('cat.jpg',	'rb')	as	cat_picture:

				cat_picture.seek(2)

				cat_picture.read(4)

				print(cat_picture.tell())

				print(cat_picture.mode)

Output:

6

rb

Exceptions

Working	 with	 anything	 that	 exists	 outside	 of	 your	 program	 increases	 the	 chances	 for	 errors	 and
exceptions.	Working	with	files	falls	well	within	this	category.	For	example,	a	file	you	are	attempting
to	 write	 to	 may	 be	 read-only.	 A	 file	 you	 are	 attempting	 to	 read	 from	 may	 not	 be	 available.	 In	 a
previous	chapter	you	learned	about	the	try/except	block.	Let's	put	it	to	use	in	the	following	example.

#	Open	a	file	and	assign	its	contents	to	a	variable.

#	If	the	file	is	unavailable,	create	an	empty	variable.

try:

				contacts	=	open('contacts.txt').read()

except:

				contacts	=	[]

				

print(len(contacts))

Output:

3

If	the	file	could	not	be	read,	the	output	would	be:

0

Review

To	open	a	file,	use	the	built-in	open()	function.	The	format	is	open(path_to_file,	mode).
If	mode	is	omitted	when	opening	a	file	it	defaults	to	read-only.
Forward	slashes	can	be	used	as	directory	separators,	even	in	Windows.
The	read()	file	object	method	returns	the	entire	contents	of	the	file	as	a	string.
To	close	a	file,	use	the	close()	file	object	method.
To	automatically	close	a	file	use	the	with	statement.	The	format	is	with	open(file_path)	as
file_object_variable_name:	followed	by	a	code	block.
To	 read	 a	 file	 one	 line	 at	 a	 time,	 use	 a	 for	 loop.	 The	 format	 is	 for	 line_variable	 in

file_object_variable:.
To	remove	any	trailing	white	space	use	the	rstrip()	string	method.



Write	data	to	a	file	using	the	write()	file	object	method.
When	a	file	is	opened	in	binary	mode,	the	read()	file	object	accepts	bytes.	When	a	file	is	opened
in	text	mode,	which	is	the	default,	read()	accepts	characters.
In	most	cases	a	character	is	one	byte	in	the	length,	but	this	does	not	hold	true	in	every	situation.
Plan	for	exceptions	when	working	with	files.	Use	try/except	blocks.

Exercises

Line	Numbers

Create	a	program	that	opens	file.txt.	Read	each	line	of	the	file	and	prepend	it	with	a	line	number.

Sample	output:

1:	This	is	line	one.

2:	This	is	line	two.

3:	Finally,	we	are	on	the	third	and	last	line	of	the	file.

Solution

with	open('file.txt')	as	file:

				line_number	=	1

				for	line	in	file:

								print('{}:	{}'.format(line_number,	line.rstrip()))

								line_number	+=	1

Alphabetize

Read	 the	 contents	 of	 animals.txt	 and	 produce	 a	 file	 named	 animals-sorted.txt	 that	 is	 sorted
alphabetically.

The	contents	of	animals.txt:

man

bear

pig

cow

duck

horse

dog

After	the	program	is	executed	the	contents	of	animals-sorted.txt	should	be:

bear

cow

dog

duck

horse

man

pig



Solution

unsorted_file_name	=	'animals.txt'

sorted_file_name	=	'animals-sorted.txt'

animals	=	[]

try:

				with	open(unsorted_file_name)	as	animals_file:

								for	line	in	animals_file:

												animals.append(line)

				animals.sort()

except:

				print('Could	not	open	{}.'.format(unsorted_file_name))

try:

				with	open(sorted_file_name,	'w')	as	animals_sorted_file:

								for	animal	in	animals:

												animals_sorted_file.write(animal)

except:

				print('Could	not	open	{}.'.format(sorted_file_name))

Resources

Core	tools	for	working	with	streams:	https://docs.python.org/3/library/io.html
Handling	Exceptions:	https://wiki.python.org/moin/HandlingExceptions
open()	documentation:	https://docs.python.org/3/library/functions.html#open

https://docs.python.org/3/library/io.html
https://wiki.python.org/moin/HandlingExceptions
https://docs.python.org/3/library/functions.html#open


Chapter	9	-	Modules	and	the	Python	Standard
Library
Modules

Python	modules	are	files	that	have	a	.py	extension	and	can	implement	a	set	of	attributes	(variables),
methods	 (functions),	 and	 classes	 (types).	A	module	 can	 be	 included	 in	 another	Python	program	by
using	the	import	statement	followed	by	the	module	name.	To	import	a	module	named	time	 include
import	time	in	your	Python	program.	You	can	now	access	the	methods	within	the	time	module	by
calling	 time.method_name()	 or	 attributes,	 sometimes	 called	 variables,	 by	 calling
time.attribute_name.	Here	is	an	example	using	the	asctime()	method	and	the	timezone	attribute
from	the	time	module.	The	timezone	attribute	contains	the	number	of	seconds	between	UTC	and	the
local	time.

import	time

print(time.asctime())

print(time.timezone)

Output:

Mon	Aug	25	19:08:43	2014

21600

When	 you	 import	 module_name,	 all	 of	 the	 methods	 in	 that	 module	 are	 available	 as
module_name.method_name().	 If	you	want	 to	use	a	single	method	 in	a	module	you	can	 import	 just
that	method	using	the	from	module_name	import	method_name	syntax.	Now	the	method	is	available
in	 your	 program	 by	 name.	 Instead	 of	 calling	 module_name.method_name()	 you	 can	 now	 call
method_name().

from	time	import	asctime

print(asctime())

Output:

Mon	Aug	25	19:08:43	2014

You	can	do	the	same	thing	with	module	attributes	and	classes.	If	you	want	to	import	more	than	one
item	 from	a	module	you	can	create	 a	 separate	from	module_name	import	method_name	 lines	 for
each	 one.	 You	 can	 also	 provide	 a	 comma	 separated	 list	 like	 this:	 from	 module_name	 import

method_name1,	method_name2,	method_nameN.	Let's	 import	 the	asctime()	 and	sleep()	methods
from	time	time	module.	The	sleep()	method	suspends	execution	for	a	given	number	of	seconds.

from	time	import	asctime,	sleep

print(asctime())

sleep(3)

print(asctime())



Output:

Mon	Aug	25	19:08:43	2014

Mon	Aug	25	19:08:46	2014

One	of	the	advantages	of	importing	a	single	method	or	list	of	methods	from	a	module	is	that	you	can
access	it	directly	by	name	without	having	to	precede	it	with	the	module	name.	For	example,	sleep(3)
versus	time.sleep(3).	 If	 you	want	 to	 be	 able	 to	 access	 everything	 from	a	module	 use	 an	 asterisk
instead	of	a	list	of	methods	to	import.	However,	I	do	not	recommend	this	practice.	I	only	point	it	out
because	you	will	see	it	used	from	time	to	time.	The	reason	you	want	to	avoid	this	approach	is	that	if
you	import	everything	into	your	program	you	may	override	an	existing	function	or	variable.	Also,	if
you	 import	multiple	methods	 using	 an	 asterisk	 it	 will	make	 it	 hard	 to	 determine	what	 came	 from
where.

from	time	import	*

print(timezone)

print(asctime())

sleep(3)

print(asctime())

Output:

21600

Mon	Aug	25	19:08:43	2014

Mon	Aug	25	19:08:46	2014

Peeking	Inside	a	Module

Use	the	dir()	built-in	function	to	find	out	what	attributes,	methods,	and	classes	exist	within	a	module.

>>>	import	time

>>>	dir(time)

['_STRUCT_TM_ITEMS',	'__doc__',	'__file__',	'__loader__',	'__name__',	'__package__',	

The	Module	Search	Path

You	 can	 view	 the	 default	module	 search	 path	 by	 examining	sys.path.	When	 you	 issue	 an	import
module_name	statement,	Python	looks	for	the	module	in	the	first	path	in	the	list.	If	it	is	not	found	the
next	 path	 is	 examined	 and	 so	 on	 until	 the	module	 is	 found	 or	 all	 of	 the	module	 search	 paths	 are
exhausted.	In	addition	to	directories,	the	module	search	path	may	include	zip	files.	Python	will	search
within	 the	 zip	 file	 file	 for	 a	 matching	 module	 as	 well.	 The	 default	 module	 search	 path	 will	 vary
depending	on	your	 installation	of	Python,	 the	Python	version,	and	 the	operating	system.	Here	 is	an
example	from	a	Python	installation	on	a	Mac.

#	show_module_path.py

import	sys

for	path	in	sys.path:

				print(path)

Output:



/Users/j

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

The	 show_module_path.py	 file	 was	 located	 in	 /Users/j	 when	 I	 executed	 python3

show_module_path.py.	Notice	that	/Users/j	is	first	in	the	module	search	path.	The	other	directories
were	determined	by	the	Python	installation.

If	you	want	Python	 to	 look	 in	other	 locations	 for	modules	you	will	need	 to	manipulate	 the	module
search	path.	There	are	two	methods	to	do	this.	The	first	method	is	to	modify	sys.path	as	you	would
any	other	list.	For	example,	you	can	append	directory	locations	using	a	string	data	type.

import	sys

sys.path.append('/Users/jason/python')

for	path	in	sys.path:

				print(path)

Output:

/Users/j

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

/Users/jason/python

You	 can	 also	 manipulate	 the	 PYTHONPATH	 environment	 variable.	 It	 acts	 very	 similar	 to	 the	 PATH
environment	variable.	On	Mac	and	Linux	systems	PYTHONPATH	can	be	populated	with	a	list	of	colon
separated	directories.	On	Windows	systems	the	PYTHONPATH	environment	variable	requires	the	use	of
a	semicolon	to	separate	the	list	of	directories.	The	directories	listed	in	PYTHONPATH	are	inserted	after
the	directory	where	the	script	resides	and	before	the	default	module	search	path.

In	 this	 example	 /Users/jason	 is	 the	 directory	 where	 the	 show_module_path.py	 Python	 program
resides.	 The	 /Users/jason/python	 and	 /usr/local/python/modules	 paths	 are	 included	 in
PYTHONPATH.	The	export	command	makes	PYTHONPATH	available	to	programs	started	from	the	shell.

[jason@mac	~]$	export	PYTHONPATH=/Users/jason/python:/usr/local/python/modules

[jason@mac	~]$	pwd

/Users/jason	

[jason@mac	~]$	python3	show_module_path.py

/Users/jason

/Users/jason/python

/usr/local/python/modules

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

[jason@mac	~]$

If	a	module	is	not	found	in	the	search	path	an	ImportError	exception	is	raised.



import	say_hi

Output:

Traceback	(most	recent	call	last):

		File	"test_say_hi.py",	line	1,	in	<module>

				import	say_hi

ImportError:	No	module	named	'say_hi'

The	Python	Standard	Library

In	the	previous	examples	we	have	been	using	the	time	module	which	is	included	with	Python.	Python
is	distributed	with	a	 large	 library	of	modules	 that	you	can	 take	advantage	of.	As	a	matter	of	 fact,	 I
suggest	looking	at	what	the	Python	standard	library	has	to	offer	before	writing	any	of	your	own	code.
For	example,	if	you	want	to	read	and	write	CSV	(comma-separated	values)	files	don't	waste	your	time
reinventing	 the	 wheel.	 Simply	 use	 Python's	 csv	 module.	 Do	 you	 want	 to	 enable	 logging	 in	 your
program?	Use	the	logging	module.	Do	you	want	to	make	an	HTTP	request	to	a	web	service	and	then
parse	the	JSON	response?	Use	the	urllib.request	and	json	modules.	The	list	of	what	is	available	in
the	Python	Standard	Library	is	located	at	https://docs.python.org/3/library/.

Let's	use	the	exit()	method	from	the	sys	module	to	cleanly	terminate	a	program	if	we	encounter	an
error.	 In	 the	 following	 example	 the	 file	 test.txt	 is	 opened.	 If	 the	 program	 encounters	 an	 error
opening	 the	 file	 the	 code	 block	 following	 except:	 will	 execute.	 If	 the	 reading	 of	 test.txt	 is
required	for	the	remaining	program	to	function	correctly,	there	is	no	need	to	continue.	The	exit()
method	can	take	an	exit	code	as	an	argument.	If	no	exit	code	is	provided,	0	 is	used.	By	convention,
when	an	error	causes	a	program	to	exit	a	non-zero	exit	code	is	expected.

import	sys

file_name	=	'test.txt'

try:

				with	open(file_name)	as	test_file:

							for	line	in	test_file:

											print(line)

except:

				print('Could	not	open	{}.'.format(file_name))

				sys.exit(1)

Creating	Your	Own	Modules

Just	as	Python	has	a	library	of	reusable	code,	so	can	you.	If	you	want	to	create	your	own	module,	it's
easy.	Remember	that	in	the	simplest	form,	modules	are	files	that	have	a	.py	extension.	Simply	create	a
Python	file	with	your	code	and	import	it	from	another	Python	program.

Here	are	the	contents	of	say_hi.py.

def	say_hi():

				print('Hi!')

Here	 is	 how	 you	 can	 import	 and	 use	 the	say_hi	module.	 To	 call	 the	say_hi()	method	within	 the

https://docs.python.org/3/library/


say_hi	module,	use	say_hi.say_hi().

import	say_hi

say_hi.say_hi()

Output:

Hi!

This	is	another	simple	module	called	say_hi2.	Here	are	the	contents	of	say_hi2.py.

def	say_hi():

				print('Hi!')

print('Hello	from	say_hi2.py!')

Let's	see	what	happens	when	you	import	the	say_hi2	module.

import	say_hi2

say_hi2.say_hi()

Output:

Hello	from	say_hi2.py!

Hi!

What	happened?	When	say_hi2	is	imported	its	contents	are	executed.	First,	the	say_hi()	function	is
defined.	Next	 the	 ``print```	 function	 is	 executed.	Python	 allows	you	 to	 create	programs	 that	 behave
one	way	when	they	are	executed	and	another	way	when	they	are	imported.	If	you	want	to	be	able	to
reuse	functions	from	an	existing	Python	program	but	do	not	want	the	main	program	to	execute,	you
can	account	for	that.

Using	main

When	a	Python	file	is	executed	as	a	program	the	special	variable	__name__	is	set	to	__main__.	When
it	is	imported	the	__name__	variable	is	not	populated.	You	can	use	this	to	control	the	behavior	of	your
Python	program.	Here	is	the	say_hi3.py	file.

def	say_hi():

				print('Hi!')

def	main():

				print('Hello	from	say_hi3.py!')

				say_hi()

if	__name__	==	'__main__':

				main()

When	 it	 is	 executed	 as	 a	 program	 the	 code	 block	 following	 if	 __name__	 ==	 '__main__':	 is
executed.	 In	 this	example	 it	 simply	calls	main().	This	 is	a	common	pattern	and	you	will	see	 this	 in
many	 Python	 applications.	When	 say_hi3.py	 is	 imported	 as	 a	 module	 nothing	 is	 executed	 unless
explicitly	called	from	the	importing	program.



[jason@mac	~]$	python3	say_hi3.py

Hello	from	say_hi3.py!

Hi!

[jason@mac	~]$

import	say_hi3

say_hi3.say_hi()

Output:

Hi!

Review

Python	 modules	 are	 files	 that	 have	 a	 .py	 extension	 and	 can	 implement	 a	 set	 of	 variables,
functions,	and	classes.
Use	the	import	module_name	syntax	to	import	a	module.
The	default	module	search	path	is	determined	by	your	Python	installation.
To	manipulate	 the	module	 search	 path	modify	 sys.path	 or	 set	 the	 PYTHONPATH	 environment
variable.
The	 Python	 standard	 library	 is	 a	 large	 collection	 of	 code	 that	 can	 be	 reused	 in	 your	 Python
programs.
Use	the	dir()	built-in	function	to	find	out	what	exists	within	a	module.
You	can	create	your	own	personal	library	by	writing	your	own	modules.
You	 can	 control	 how	 a	 Python	 program	 behaves	 based	 on	 whether	 it	 is	 run	 interactively	 or
imported	by	checking	the	value	of	___name___.
The	if	__name__	==	'__main__':	syntax	is	a	common	Python	idiom.

Exercises

What	Did	the	Cat	Say,	Redux

Update	the	"What	Did	the	Cat	Say"	program	from	Chapter	1	so	that	it	can	be	run	directly	or	imported
as	a	module.	When	it	runs	as	a	program	is	should	prompt	for	input	and	display	a	cat	"saying"	what
was	provided	by	the	user.	Place	the	input	provided	by	the	user	inside	a	speech	bubble.	Make	the	speech
bubble	expand	or	contract	to	fit	around	the	input	provided	by	the	user.

Sample	output	when	run	interactively:

												_______________________

										<	Pet	me	and	I	will	purr.	>

												-----------------------

										/

	/\_/\			/

(	o.o	)

	>	^	<

Next,	 create	 a	 new	program	 called	cat_talk.py	 that	 imports	 the	cat_say	module.	Use	 a	 function
from	the	cat_say()	module	to	display	various	messages	to	the	screen.



Sample	output	when	used	as	a	module:

												________

										<	Feed	me.	>

												--------

										/

	/\_/\			/

(	o.o	)

	>	^	<

												_______

										<	Pet	me.	>

												-------

										/

	/\_/\			/

(	o.o	)

	>	^	<

												____________

										<	Purr.		Purr.	>

												------------

										/

	/\_/\			/

(	o.o	)

	>	^	<

Solution

Here	are	the	contents	of	cat_say.py:

def	cat_say(text):

				"""Generate	a	picture	of	a	cat	saying	something"""

				text_length	=	len(text)

				print('												{}'.format('_'	*	text_length))

				print('										<	{}	>'.format(text))

				print('												{}'.format('-'	*	text_length))

				print('										/')

				print('	/\_/\			/')

				print('(	o.o	)')

				print('	>	^	<')

def	main():

				text	=	input('What	would	you	like	the	cat	to	say?	')

				cat_say(text)

if	__name__	==	'__main__':

				main()

Here	are	the	contents	of	cat_talk.py:

import	cat_say

def	main():

				cat_say.cat_say('Feed	me.')

				cat_say.cat_say('Pet	me.')

				cat_say.cat_say('Purr.		Purr.')

if	__name__	==	'__main__':

				main()



Resources

__main__	documentation:	https://docs.python.org/3/library/__main__.html
Idioms	and	Anti-Idioms	in	Python:	https://docs.python.org/3/howto/doanddont.html
Linux	for	Beginners:	http://www.linuxtrainingacademy.com/linux.
PYTHONPATH	 documentation:	 https://docs.python.org/3/using/cmdline.html#envvar-
PYTHONPATH
The	Python	Standard	Library:	https://docs.python.org/3/library/
The	sys	module:	https://docs.python.org/3/library/sys.html
sys.path	documentation:	https://docs.python.org/3/library/sys.html#sys.path
virtualenv	documentation:	https://pypi.python.org/pypi/virtualenv

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/howto/doanddont.html
http://www.linuxtrainingacademy.com/linux
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html#sys.path
https://pypi.python.org/pypi/virtualenv


Conclusion
Even	though	this	is	the	end	of	this	book,	I	sincerely	hope	that	it	is	just	the	beginning	of	your	Python
journey.	Python	has	been	growing	steadily	in	popularity	over	the	last	decade	and	is	increasingly	used
in	 all	 areas	 of	 computing.	 You	 will	 find	 Python	 powering	 popular	 websites	 such	 as	 Pinterest,
Instagram,	 and	 Reddit.	 Python	 is	 used	 in	 scientific	 computing	 and	 is	 running	 on	 supercomputers
around	 the	 world.	 It's	 used	 for	 system	 administration	 tasks	 like	 configuration	 and	 package
management	with	YUM	and	anaconda	being	prime	examples.	Python	has	been	used	to	create	popular
games	 such	 as	 EVE	 Online	 and	 Toontown.	 No	 matter	 what	 your	 programming	 interests,	 the
possibilities	for	learning,	exploring,	and	growing	are	endless.

Here's	one	last	Python	program.

import	this

Output:

The	Zen	of	Python,	by	Tim	Peters

Beautiful	is	better	than	ugly.

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

Complex	is	better	than	complicated.

Flat	is	better	than	nested.

Sparse	is	better	than	dense.

Readability	counts.

Special	cases	aren't	special	enough	to	break	the	rules.

Although	practicality	beats	purity.

Errors	should	never	pass	silently.

Unless	explicitly	silenced.

In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

There	should	be	one--	and	preferably	only	one	--obvious	way	to	do	it.

Although	that	way	may	not	be	obvious	at	first	unless	you're	Dutch.

Now	is	better	than	never.

Although	never	is	often	better	than	*right*	now.

If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.

If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.

Namespaces	are	one	honking	great	idea	--	let's	do	more	of	those!



About	the	Author
Jason	Cannon	started	his	career	as	a	Unix	and	Linux	System	Engineer	in	1999.	Since	that	time	he	has
utilized	 his	 Linux	 skills	 at	 companies	 such	 as	 Xerox,	 UPS,	 Hewlett-Packard,	 and	 Amazon.com.
Additionally,	he	has	acted	as	a	technical	consultant	and	independent	contractor	for	small	businesses	as
well	as	Fortune	500	companies.

Jason	 has	 professional	 experience	with	 CentOS,	 RedHat	 Enterprise	 Linux,	 SUSE	 Linux	 Enterprise
Server,	and	Ubuntu.	He	has	used	several	Linux	distributions	on	personal	projects	 including	Debian,
Slackware,	 CrunchBang,	 and	 others.	 In	 addition	 to	 Linux,	 Jason	 has	 experience	 supporting
proprietary	Unix	operating	systems	including	AIX,	HP-UX,	and	Solaris.

He	 enjoys	 teaching	others	 how	 to	use	 and	 exploit	 the	power	of	 open	 source	 software.	 Jason	 is	 the
author	 of	 Command	 Line	Kung	 Fu	 and	 Linux	 for	 Beginners.	He	 is	 also	 the	 founder	 of	 the	 Linux
Training	Academy	where	he	blogs	and	teaches	online	video	training	courses.

http://www.amazon.com/gp/product/B00JRGCFLA/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00JRGCFLA&linkCode=as2&tag=ebook0a6b-20&linkId=Y3NXNRAK4M57HOSL
http://www.linuxtrainingacademy.com/linux
http://www.LinuxTrainingAcademy.com


Additional	Resources	Including	Exclusive
Discounts	for	Python	Programming	for
Beginners	Readers
Python

Learn	Python	Django	From	Scratch:	Learn	Python	Django	with	this	in-depth	course	for	those	who	are
new	 to	 Python	 Django	 and	 those	 who	 are	 not	 using	 it	 to	 its	 fullest	 potential.	 Enroll	 now	 at
http://www.linuxtrainingacademy.com/django-scratch

Python	for	Beginners:	This	comprehensive	course	covers	 the	basics	of	Python	as	well	as	 the	more
advanced	aspects	such	as	debugging	and	handling	files.	Enroll	to	gain	access	to	all	13	chapters	of	this
Python	 for	 Beginners	 course	 as	 well	 as	 labs	 and	 code	 files.	 Visit
http://www.linuxtrainingacademy.com/python-video-course	to	level	up	your	Python	skills.

Ruby	and	Ruby	on	Rails

AcademyX:	Use	 coupon	 code	 "cannon"	 and	 save	 20%!	Academy	X	 offers	many	 classes	 including
Ruby	and	Ruby	on	Rails.	If	you	are	looking	for	training	in	San	Francisco,	Sacramento,	San	Jose,	Los
Angeles	or	San	Diego	head	on	over	to	http://www.academyx.com.

Coding	Dojo:	 Save	 $1,000	 off	 of	 your	 tuition	 when	 you	 tell	 the	 team	 at	 Coding	 Dojo	 you	 were
referred	by	Jason	Cannon.	When	you	apply,	 type	in	“Jason	Cannon”	as	 the	answer	 to	 the	“How	did
you	hear	about	us”	question.	Coding	Dojo	 is	a	 full	stack	coding	boot	camp.	You	will	 learn	HTML,
CSS,	MySQL,	PHP,	several	database	 technologies,	as	well	as	Ruby	on	Rails.	They	offer	courses	 in
Seattle,	WA	and	San	Francisco,	CA.

MakerSquare:	 MakerSquare	 holds	 classes	 immersive	 boot	 camps	 and	 part-time	 classes	 in	 San
Francisco,	CA	as	well	as	 in	Austin,	TX.	If	you’re	 from	out	of	 town	they	can	even	provide	housing
arrangements	 for	you.	At	MakerSquare	you	will	 learn	software	engineering	 fundamentals	by	using
technologies	such	as	JQuery,	Ruby	on	Rails,	and	more.	Answer	“I	was	a	student	of	Jason	Cannon’s”
to	the	“What	else	have	you	used	to	learn	programming”	question	on	the	application.

Tealeaf	Academy:	The	Tealeaf	Academy	offers	a	series	of	4	to	8	week	courses	on	Ruby	and	Ruby	on
Rails.	The	courses	are	delivered	online,	however	you	have	access	to	teachers	that	are	available	to	help
you	anytime	you	need	it.	If	you	are	looking	to	get	on	the	fast-track	to	becoming	a	professional	level
developer,	check	out	the	Tealeaf	Academy.	Visit	http://www.linuxtrainingacademy.com/tealeaf	to	learn
more.

Turing:	The	Turing	School	of	Software	&	Design	is	a	non-profit	organization	that	focuses	on	student
success.	At	Turing	you	will	learn	Test-Driven	Development	(TDD),	Ruby,	Sinatra,	Ruby	on	Rails,	and
more.	Use	referral	code	“cannon”	at	http://turing.io/	to	save	$500	off	of	tuition.

http://www.linuxtrainingacademy.com/django-scratch
http://www.linuxtrainingacademy.com/django-scratch
http://www.linuxtrainingacademy.com/python-video-course
http://www.linuxtrainingacademy.com/python-video-course
http://www.academyx.com/
http://www.academyx.com
http://www.codingdojo.com/
http://www.makersquare.com/
http://www.linuxtrainingacademy.com/tealeaf
http://www.linuxtrainingacademy.com/tealeaf
http://turing.io
http://turing.io/


Web	Development

Coder	Vox:	Coder	Vox	is	a	12	week	immersive	programming	bootcamp	located	in	Austin,	TX.	The
course	 teaches	 PHP,	 HTML,	 CSS,	 Javascript,	 Git,	 and	 other	 tools	 used	 by	 professional	 web
developers.	Save	$250	off	of	 tuition	when	you	 tell	 them	 that	 I	 referred	you.	Simply	answer	“Jason
Cannon”	 to	 the	 “How	 did	 you	 hear	 about	 Coder	 Vox?”	 application	 question	 at
http://www.codervox.com/.

Dev	Mountain:	Learn	web	programming	or	IOS	development	by	taking	a	full-time	immersive	course
or	 a	 part-time	 after-hours	 course.	 The	 web	 development	 curriculum	 includes	 Javascript,	 jQuery,
AngularJS,	and	Node.JS.	Classes	are	offered	in	two	locations	in	Provo	and	Salt	Lake	City,	UT.	Visit
http://www.linuxtrainingacademy.com/devmountain	for	more	information.

Become	 a	 Web	 Developer	 from	 Scratch:	 Learn	 Everything	 You	 Need	 to	 Know	 About	 Web
Development	Even	 If	You've	Never	Programmed	Before!	You'll	 learn	 the	basics:	HTML,	XHTML,
CSS	and	JavaScript.	Back-end	development	 is	also	covered:	PHP,	MySQL,	XML	and	jSON.	Finally,
you'll	 learn	 all	 about	 front-end	 Development:	 AJAX,	 jQuery,	 HTML5	 and	 CSS3.	 Visit
http://www.linuxtrainingacademy.com/web-dev	to	get	started.

http://www.codervox.com/
http://www.codervox.com/
http://www.linuxtrainingacademy.com/devmountain
http://www.linuxtrainingacademy.com/web-dev
http://www.linuxtrainingacademy.com/web-dev


Appendix
Appendix	A:	Trademarks

BSD/OS	is	a	trademark	of	Berkeley	Software	Design,	Inc.	in	the	United	States	and	other	countries.

Linux®	is	the	registered	trademark	of	Linus	Torvalds	in	the	U.S.	and	other	countries.

Mac	and	OS	X	are	trademarks	of	Apple	Inc.,	registered	in	the	U.S.	and	other	countries.

Open	Source	is	a	registered	certification	mark	of	Open	Source	Initiative.

Python	is	a	registered	trademark	of	the	Python	Software	Foundation.

UNIX	is	a	registered	trademark	of	The	Open	Group.

Windows	is	a	registered	trademark	of	Microsoft	Corporation	in	the	United	States	and	other	countries.

All	other	product	names	mentioned	herein	are	the	trademarks	of	their	respective	owners.


	Python Programming for Beginners
	Your Free Gift
	Introduction
	Configuring your Environment for Python
	Installing Python
	Preparing Your Computer for Python
	Review
	Resources

	Chapter 1 - Variables and Strings
	Variables
	Strings
	Using Quotes within Strings
	Indexing
	Built-in Functions
	String Methods
	String Concatenation
	Repeating Strings
	The str() Function
	Formatting Strings
	Getting User Input
	Review
	Exercises
	Resources

	Review
	Chapter 2 - Numbers, Math, and Comments
	Numeric Operations
	Strings and Numbers
	The int() Function
	The float() Function
	Comments
	Review
	Exercises

	Chapter 3 - Booleans and Conditionals
	Comparators
	Boolean Operators
	Conditionals
	Review
	Exercises
	Resources

	Chapter 4 - Functions
	Review
	Exercises
	Resources

	Chapter 5 - Lists
	Adding Items to a List
	Slices
	String Slices
	Finding an Item in a List
	Exceptions
	Looping through a List
	Sorting a List
	List Concatenation
	Ranges
	Review
	Exercises
	Resources

	Chapter 6 - Dictionaries
	Adding Items to a Dictionary
	Removing Items from a Dictionary
	Finding a Key in a Dictionary
	Finding a Value in a Dictionary
	Looping through a Dictionary
	Nesting Dictionaries
	Review
	Exercises
	Resources

	Chapter 7 - Tuples
	Switching between Tuples and Lists
	Looping through a Tuple
	Tuple Assignment
	Review
	Exercises
	Resources

	Chapter 8 - Reading from and Writing to Files
	File Position
	Closing a File
	Automatically Closing a File
	Reading a File One Line at a Time
	File Modes
	Writing to a File
	Binary Files
	Exceptions
	Review
	Exercises
	Resources

	Chapter 9 - Modules and the Python Standard Library
	Modules
	Peeking Inside a Module
	The Module Search Path
	The Python Standard Library
	Creating Your Own Modules
	Using main
	Review
	Exercises
	Resources

	Conclusion
	About the Author
	Additional Resources Including Exclusive Discounts for Python Programming for Beginners Readers
	Python
	Ruby and Ruby on Rails
	Web Development

	Appendix
	Appendix A: Trademarks


